Теорема о графике обратной функции. Обратные функции – определение и свойства. Задачи на нахождение обратных функций

Пусть множества $X$ и $Y$ включены в множество действительных чисел. Введем понятие обратимой функции .

Определение 1

Функция $f:X\to Y$ отображающая множество $X$ в множество $Y$ называется обратимой, если для любых элементов $x_1,x_2\in X$ из того что $x_1\ne x_2$ следует, что $f(x_1)\ne f(x_2)$.

Теперь мы можем ввести понятие обратной функции.

Определение 2

Пусть функция $f:X\to Y$ отображающая множество $X$ в множество $Y$ обратима. Тогда функция $f^{-1}:Y\to X$ отображающая множество $Y$ в множество $X$ определяемая условием $f^{-1}\left(y\right)=x$ называется обратной для $f(x)$.

Сформулируем теорему:

Теорема 1

Пусть функция $y=f(x)$ определена, монотонно возрастает (убывает) и непрерывна в некотором промежутке $X$. Тогда в соответствующем промежутке $Y$ значений этой функции у нее существует обратная функция, которая также монотонно возрастает (убывает) и непрерывна на промежутке $Y$.

Введем теперь, непосредственно, понятие взаимно обратных функций.

Определение 3

В рамках определения 2, функции $f(x)$ и $f^{-1}\left(y\right)$ называются взаимно обратными функциями.

Свойства взаимно обратных функций

Пусть функции $y=f(x)$ и $x=g(y)$ взаимно обратные, тогда

    $y=f(g\left(y\right))$ и $x=g(f(x))$

    Область определения функции $y=f(x)$ равна области значения функции$\ x=g(y)$. А область определения функции $x=g(y)$ равна области значения функции$\ y=f(x)$.

    Графики функций $y=f(x)$ и $x=g(y)$ симметричны относительно прямой $y=x$.

    Если одна из функций возрастает (убывает), то и другая функция возрастает (убывает).

Нахождение обратной функции

    Решается уравнение $y=f(x)$ относительно переменной $x$.

    Из полученных корней находят те, которые принадлежат промежутку $X$.

    Найденные $x$ ставят в соответствия числу $y$.

Пример 1

Найти обратную функцию, для функции $y=x^2$ на промежутке $X=[-1,0]$

Так как эта функция убывает и непрерывна на промежутке $X$, то на промежутке $Y=$, которая также убывает и непрерывна на этом промежутке (теорема 1).

Вычислим $x$:

\ \

Выбираем подходящие $x$:

Ответ: обратная функция $y=-\sqrt{x}$.

Задачи на нахождение обратных функций

В этой части рассмотрим обратные функции для некоторых элементарных функций. Задачи будем решать по схеме, данной выше.

Пример 2

Найти обратную функцию для функции $y=x+4$

    Найдем $x$ из уравнения $y=x+4$:

Пример 3

Найти обратную функцию для функции $y=x^3$

Решение.

Так как функция возрастает и непрерывна на всей области определения, то, по теореме 1, она имеет на ней обратную непрерывную и возрастающую функцию.

    Найдем $x$ из уравнения $y=x^3$:

    Находим подходящие значения $x$

    Значение в нашем случае подходит (так как область определения -- все числа)

    Переопределим переменные, получим, что обратная функция имеет вид

Пример 4

Найти обратную функцию для функции $y=cosx$ на промежутке $$

Решение.

Рассмотрим на множестве $X=\left$ функцию $y=cosx$. Она непрерывна и убывает на множестве $X$ и отображает множество $X=\left$ на множество $Y=[-1,1]$, поэтому по теореме о существовании обратной непрерывной монотонной функции у функции $y=cosx$ в множестве $Y$ существует обратная функция, которая также непрерывна и возрастает в множестве $Y=[-1,1]$ и отображает множество $[-1,1]$ на множество $\left$.

    Найдем $x$ из уравнения $y=cosx$:

    Находим подходящие значения $x$

    Переопределим переменные, получим, что обратная функция имеет вид

Пример 5

Найти обратную функцию для функции $y=tgx$ на промежутке $\left(-\frac{\pi }{2},\frac{\pi }{2}\right)$.

Решение.

Рассмотрим на множестве $X=\left(-\frac{\pi }{2},\frac{\pi }{2}\right)$ функцию $y=tgx$. Она непрерывна и возрастает на множестве $X$ и отображает множество $X=\left(-\frac{\pi }{2},\frac{\pi }{2}\right)$ на множество $Y=R$, поэтому по теореме о существовании обратной непрерывной монотонной функции у функции $y=tgx$ в множестве $Y$ существует обратная функция, которая также непрерывна и возрастает в множестве $Y=R$ и отображает множество $R$ на множество $\left(-\frac{\pi }{2},\frac{\pi }{2}\right)$

    Найдем $x$ из уравнения $y=tgx$:

    Находим подходящие значения $x$

    Переопределим переменные, получим, что обратная функция имеет вид

    Определение обратной функции.

    Пусть функция строго монотонная (возрастающая или убывающая) и непрерывная на области определения , область значений этой функции , тогда на интервале определена непрерывная строго монотонная функция с областью значений , которая является обратной для .

    Другими словами, об обратной функции для функции на конкретном промежутке имеет смысл говорить, если на этом интервале либо возрастает, либо убывает.

    Функции f и g называют взаимно обратными .

    Зачем вообще рассматривать понятие обратных функций?

    Это вызвано задачей решения уравнений . Решения как раз и записываются через обратные функции.

    Примеры нахождения взаимнообратных функций.

    Например, требуется решить уравнение .

    Решениями являются точки .

    Функции косинус и арккосинус как раз являются обратными на области определения.

    Рассмотрим несколько примеров нахождения обратных функций .

    Начнем с линейных взаимнообратных функций.

    Пример.

    Решение.

    Областью определения и областью значений этой функции является все множество действительных чисел. Выразим x через y (другими словами, решим уравнение относительно x ).

    Это и есть обратная функция, правда здесь y – аргумент, а x – функция этого аргумента. Чтобы не нарушать привычки в обозначениях (это не имеет принципиального значения), переставив буквы x и y , будем писать .

    Таким образом, и - взаимно обратные функции.

    Приведем графическую иллюстрацию взаимно обратных линейных функций.

    Очевидно, что графики симметричны относительно прямой y=x (биссектрисы первого и третьего квадрантов). Это одно из свойств взаимно обратных функций, о которых речь пойдет ниже.

    Теперь рассмотрим пример нахождения логарифмической функции, обратной к заданной показательной функции.

    Пример.

    Найти функцию обратную для .

    Решение.

    Областью определения этой функции является все множество действительных чисел, областью значений является интервал . Выразим x через y (другими словами, решим уравнение относительно x ).

    Это и есть обратная функция. Переставив буквы x и y , имеем .

    Таким образом, и - показательная и логарифмическая функции есть взаимно обратные функции на области определения.

    График взаимно обратных показательной и логарифмической функций.

    Свойства взаимно обратных функций.

    Перечислим свойства взаимно обратных функций и .

    Замечание по свойству 1) .

    Например: и - взаимно обратные функции. По первому свойству имеем . Это равенство верно только для положительных y , для отрицательных y логарифм не определен. Так что не спешите с записями вида , а если уж так написали, то следует добавить фразу «при положительных y ».

    Равенство в свою очередь верно для любых действительных x .

    Надеемся, Вы уловили этот тонкий момент.

    Особенно аккуратными надо быть с тригонометрическими и обратными тригонометрическими функциями.

    К примеру, , так как область значений арксинуса , а в нее не попадает.

    Правильно будет

    В свою очередь есть верное равенство.

    То есть при и при .

    Еще раз подчеркнем: БУДЬТЕ ВНИМАТЕЛЬНЫ С ОБЛАСТЬЮ ОПРЕДЕЛЕНИЯ И ОБЛАСТЬЮ ЗНАЧЕНИЙ!

    Графики основных элементарных взаимно обратных функций.

    Если Вам потребуются обратные функции для ветвей тригонометрических функций, отличных от главных, то соответствующую обратную тригонометрическую функцию нужно будет сдвинуть вдоль оси ординат на необходимое количество периодов.

    Например, если Вам потребуется обратная функция для ветви тангенса на промежутке (эта ветвь получается из главной ветви сдвигом на величину вдоль оси ох ), то ей будет являться ветвь арктангенса, сдвинутая вдоль оси oy на .

    Пока на этом закончим с обратными функциями.

    Список литературы.

    • Колмогоров А.Н., Абрамов А.М., Дудницын Ю.П. и др. Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват учреждений.

    Взаимно обратные функции.

    Пусть функция строго монотонная (возрастающая или убывающая) и непрерывная на области определения, область значений этой функции, тогда на интервале определена непрерывная строго монотонная функция с областью значений, которая является обратной для .

    Другими словами, об обратной функции для функции на конкретном промежутке имеет смысл говорить, если на этом интервале либо возрастает, либо убывает.

    Функции f и g называют взаимно обратными.

    Зачем вообще рассматривать понятие обратных функций?

    Это вызвано задачей решения уравнений. Решения как раз и записываются через обратные функции.

    Рассмотрим несколько примеров нахождения обратных функций .

    Начнём с линейных взаимно обратных функций.

      Найти функцию, обратную для.

    Эта функция линейная, её графиком является прямая. Значит, функция монотонна на всей области определения. Поэтому, искать обратную ей функцию будем на всей области определения.

    .

    Выразим x через y (другими словами, решим уравнение относительно x ).

    - это и есть обратная функция, правда здесь y – аргумент, а x – функция этого аргумента. Чтобы не нарушать привычки в обозначениях (это не имеет принципиального значения), переставив буквы x и y , будем писать .

    Таким образом, и - взаимно обратные функции.

    Приведём графическую иллюстрацию взаимно обратных линейных функций.

    Очевидно, что графики симметричны относительно прямой (биссектрисы первой и третьей четверти). Это одно из свойств взаимно обратных функций, о которых речь пойдёт ниже.

      Найти функцию, обратную.

    Эта функция квадратная, графиком является парабола с вершиной в точке.

    .

    Функция возрастает при и убывает при. Значит, искать обратную функцию для заданной можно на одном из двух промежутков.

    Пусть, тогда, и, меняя местами х и у, получаем обратную функцию на заданном промежутке: .



      Найти функцию, обратную.

    Эта функция кубическая, графиком является кубическая парабола с вершиной в точке.

    .

    Функция возрастает при. Значит, искать обратную функцию для заданной можно на всей области определения.

    , и, меняя местами х и у, получаем обратную функцию.

    Проиллюстрируем это на графике.


    Перечислим свойства взаимно обратных функций и.

      и.

      Из первого свойства видно, что область определения функции совпадает с областью значений функции и наоборот.

      Графики взаимно обратных функций симметричны относительно прямой.

      Если возрастает, то и возрастает, если убывает, то и убывает.

      Для заданной функции найдите обратную функцию:

      Для заданной функции найдите обратную и постройте графики заданной и обратной функции: Выясните, существует ли обратная функция для заданной функции. Если да, то задайте обратную функцию аналитически, постройте график заданной и обратной функции: Найдите область определения и область значений функции, обратной для функции, если:
      1. Найдите область значений каждой из взаимно обратных функций и, если указаны их области определения:

        Являются ли функции взаимно обратными, если:

      1. Найдите функцию, обратную данной. Постройте на одной системе координат графики этих взаимно обратных функций:

        Является ли данная функция обратной по отношению к самой себе: Задайте функцию, обратную данной и постройте её график:

    Мы уже сталкивались с задачей, когда по заданной функции f и заданному значению её аргумента необходимо было вычислить значение функции в этой точке. Но иногда приходится сталкиваться с обратной задачей: найти по известной функции f и её некоторому значению y значение аргумента, в котором функция принимает данное значение y.

    Функция, которая, принимает каждое свое значение в единственной точке своей области определения, называется обратимой функцией. Например, линейная функция будет являться обратимой функцией . А квадратичная функция или функция синус не будет являться обратимыми функциями. Так как одно и то же значение функция может принимать при различных аргументах.

    Обратная функция

    Положим, что f есть некоторая произвольная обратимая функция. Каждому числу из области её значений y0, соответствует лишь одно число из области определения x0, такое что f(x0) = y0.

    Если теперь мы каждому значению х0 поставим в соответствие значение y0, то получим уже новую функцию. Например, для линейной функции f(x) = k * x + b функция g(x) = (x - b)/k будет являться обратной.

    Если некоторая функция g в каждой точке х области значений обратимой функции f принимает значение у такое, что f(y) = x, то говорят, что функция g - есть обратная функция к f.

    Если у нас будет задан график некоторой обратимой функции f, то для того чтобы построить график обратной функции, можно пользоваться следующим утверждением: график функции f и обратной к ней функции g будут симметричны относительно прямой, заданной уравнением y = x.

    Если функция g является обратной к функции f, то функция g будет являться обратимой функцией. А функция f будет обратной к функции g. Обычно говорят, что две функции f и g взаимно обратные друг к другу.

    На следующем рисунке представлены графики функций f и g взаимно обратных друг к другу.

    Выведем следующую теорему: если функция f возрастает (или убывает) на некотором промежутке A, то она обратима. Обратная к а функция g, определенная в области значений функции f, также является возрастающей (или соответственно убывающей) функцией. Данная теорема называется теоремой об обратной функции .

    Транскрипт

    1 Взаимно обратные функции Две функции f и g называются взаимно обратными, если формулы y=f(x) и x=g(y) выражают одну и ту же зависимость между переменными х и у, т.е. если равенство y=f(x) верно тогда и только тогда, когда верно равенство x=g(y): y=f(x) x=g(y) Если две функции f и g взаимно обратны, то g называют обратной функцией для f и, наоборот, f обратная функция для g. Например, у=10 х и х=lgy взаимно обратные функции. Условие существования взаимно обратной функции Функция f имеет обратную, если из соотношения y=f(x) переменную х можно однозначно выразить через у. Есть функции, для которых нельзя однозначно выразить аргумент через заданное значение функции. Например: 1. y= x. Для данного положительного числа у найдутся два значения аргумента х, такие, что x =у. Например, если у=2, то х=2 или х= - 2. Значит, выразить однозначно х через у нельзя. Следовательно, эта функция не имеет взаимно обратной. 2. у=х 2. х=, х= - 3. y=sinx. При заданном значении у (y 1) найдется бесконечно много значений х, таких, что y=sinx. Функция y=f(x) имеет обратную, если всякая прямая у=у 0 пересекает график функции y=f(x) не более чем в одной точке (она может совсем не пересекать график, если у 0 не принадлежит области значений функции f). Это условие можно сформулировать иначе: уравнение f(x)=y 0 при каждом у 0 имеет не более одного решения. Условие того, что функция имеет обратную, заведомо выполняется, если функция строго возрастает или строго убывает. Если f строго возрастает, то при двух различных значениях аргумента она принимает различные значения, так как большему значению аргумента соответствует большее значение функции. Следовательно, уравнение f(x)=y для строго монотонной функции имеет не более одного решения. Показательная функция у=а х строго монотонна, поэтому она имеет обратную логарифмическую функция. Многие функции не имеют обратных. Если при некотором b уравнение f(x)=b имеет более одного решения, то функция y=f(x) обратной не имеет. На графике это означает, что прямая y=b пересекает график функции более чем в одной точке. Например, у=х 2 ; y=sinx; у=tgx.

    2 С неоднозначностью решения уравнения f(x)=b можно справиться, если уменьшить область определения функции f так, чтобы ее область значений не изменилась, но чтобы каждое свое значение она принимала один раз. Например, у=х 2, х 0; y=sinx, ; у=tgx,. Общее правило нахождения обратной функции для функции: 1. решая уравнение относительно х, находим; 2. меняя обозначения переменной х на у, а у на х, получаем функция обратную к данной. Свойства взаимно обратных функций Тождества Пусть f и g взаимно обратные функции. Это означает, что равенства y=f(x) и x=g(y) равносильны: f(g(y))=y и g(f(x))=x. Например, 1. Пусть f показательная, g логарифмическая функция. Получаем: и. 2. Функции у=х 2, х 0 и y= взаимно обратны. Имеем два тождества: и при х 0. Область определения Пусть f и g взаимно обратные функции. Область определения функции f совпадает с областью значений функции g, и, наоборот, область значений функции f совпадает с областью определения функции g. Пример. Область определения показательной функции вся числовая ось R, а ее область значений множество всех положительных чисел. У логарифмической функции наоборот: область определения множество всех положительных чисел, а область значений все множество R. Монотонность Если одна из взаимно обратных функций строго возрастает, то и другая строго возрастает. Доказательство. Пусть х 1 и х 2 два числа, лежащие в области определения функции g, причем x 1

    3 Графики взаимно обратных функций Теорема. Пусть f и g взаимно обратные функции. Графики функций y=f(x) и x=g(y) симметричны друг другу относительно биссектрисы угла хоу. Доказательство. По определению взаимно обратных функций формулы y=f(x) и x=g(y) выражают одну и ту же зависимость между переменными х и у, а значит, эта зависимость изображается одним и тем же графиком некоторой кривой С. Кривая С является графиком функции y=f(x). Возьмем произвольную точку Р(a; b) С. Это означает, что b=f(a) и одновременно a=g(b). Построим точку Q, симметричную точке Р относительно биссектрисы угла хоу. Точка Q будет иметь координаты (b; a). Так как a=g(b), то точка Q принадлежит графику функции y=g(x): действительно, при х=b значение у=а равно g(x). Таким образом, все точки, симметричные точкам кривой С относительно указанной прямой, лежат на графике функции у=g(x). Примеры функций графики которых взаимно обратны: у=е х и у=lnx; y=x 2 (x 0) и y= ; у=2x 4 и у= +2.

    4 Производная обратной функции Пусть f и g взаимно обратные функции. Графики функций y=f(x) и x=g(y) симметричны друг другу относительно биссектрисы угла хоу. Возьмем точку х=а и вычислим значение одной из функций в этой точке: f(a)=b. Тогда по определению обратной функции g(b)=a. Точки (a; f(a))=(a; b) и (b; g(b))=(b; a) симметричны относительно прямой l. Так как кривые симметричны, то и касательные к ним симметричны относительно прямой l. Из симметрии угол одной из прямых с осью х равен углу другой прямой с осью у. Если прямая образует с осью х угол α, то ее угловой коэффициент равен k 1 =tgα; тогда вторая прямая имеет угловой коэффициент k 2 =tg(α)=ctgα=. Таким образом, угловые коэффициенты прямых, симметричных относительно прямой l, взаимно обратны, т.е. k 2 =, или k 1 k 2 =1. Переходя к производным и учитывая, что угловой коэффициент касательной является значением производной в точке касания делаем вывод: Значения производных взаимно обратных функций в соответствующих точках взаимно обратны, т.е.. Пример 1. Докажите, что функция f(x)=x 3, обратима. Решение. y=f(x)=x 3. Обратной функцией будет функция y=g(x)=. Найдем производную функции g:. Т.е. =. Задание 1. Докажите, что функция, заданная формулой, обратима 1) 2) 3) 4) 5) 6) 7) 8) 9) 10)

    5 Пример 2. Найдите функцию, обратную функции у=2х+1. Решение. Функция у=2х+1 возрастающая, следовательно, она имеет обратную. Выразим х через у: получим.. Перейдя к общепринятым обозначениям, Ответ: Задание 2. Найдите обратные функции для данных функций 1) 2) 3) 4) 5) 6) 7) 8) 9) 10)


    Лекция 20 ТЕОРЕМА О ПРОИЗВОДНОЙ СЛОЖНОЙ ФУНКЦИИ. Пусть y = f(u), а u= u(x). Получаем функцию y, зависящую от аргумента x: y = f(u(x)). Последняя функция называется функцией от функции или сложной функцией.

    Глава 9 Степени Степень с целым показателем. 0 = 0; 0 = ; 0 = 0. > 0 > 0 ; > >.. >. Если четно, то () < (). Например, () 0 = 0 < 0 = = () 0. Если нечетно, то () > (). Например, () = > = = (), так

    Что будем изучать: Урок на тему: Исследование функции на монотонность. Убывающие и возрастающие функции. Связь производной и монотонности функции. Две важные теоремы о монотонности. Примеры. Ребята, мы

    Линейное уравнение a x = b имеет: единственное решение, при a 0; бесконечное множество решений, при a = 0, b = 0; не имеет решений, при a = 0, b 0. Квадратное уравнение ax 2 + bx + c = 0 имеет: два различных

    6 Задачи, приводящие к понятию производной Пусть материальная точка движется по прямой в одном направлении по закону s f (t), где t - время, а s - путь, проходимый точкой за время t Отметим некоторый момент

    Банк заданий по теме «ПРОИЗВОДНАЯ» МАТЕМАТИКА 11 класс (база) Учащиеся должны знать/понимать: Понятие производной. Определение производной. Теоремы и правила нахождения производных суммы, разности, произведения

    Геометрический смысл производной Рассмотрим график функции y=f(x) и касательную в точке P 0 (x 0 ; f(x 0)). Найдем угловой коэффициент касательной к графику в этой точке. Угол наклона касательной Р 0

    Квадратичная функция в различных задачах Дихтярь МБ Основные сведения Квадратичной функцией (квадратным трёхчленом) называется функция вида у ax bx c, где abc, заданные числа и Квадратичные функции у

    ПОНЯТИЕ ПРОИЗВОДНОЙ ФУНКЦИИ Пусть имеем функцию определенную на множестве X и пусть точка X - внутренняя точка те точка для которой существует окрестность X Возьмем любую точку и обозначим через называется

    Лекция 5 Производные основных элементарных функций Аннотация: Даются физическая и геометрическая интерпретации производной функции одной переменной Рассматриваются примеры дифференцирования функции и правила

    1 СА Лавренченко Лекция 12 Обратные функции 1 Понятие обратной функции Определение 11 Функция называется взаимно-однозначной, если она не принимает никакое значение более одного раза, те из следует при

    Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов СПО, обучающихся с применением дистанционных технологий Модуль Дифференциальное исчисление Составитель:

    Глава 5 Исследование функций с помощью формулы Тейлора Локальный экстремум функции Определение Функция = f (достигает в точке с локального максимума (минимума), если можно указать такое δ >, что ее приращение

    МОДУЛЬ «Применение непрерывности и производной. Применение производной к исследованию функций». Применение непрерывности.. Метод интервалов.. Касательная к графику. Формула Лагранжа. 4. Применение производной

    Лекция 9. Производные и дифференциалы высших порядков, их свойства. Точки экстремума функции. Теоремы Ферма и Ролля. Пусть функция y дифференцируема на некотором отрезке [b]. В таком случае ее производная

    Кафедра математики и информатики Математический анализ Учебно-методический комплекс для студентов ВПО, обучающихся с применением дистанционных технологий Модуль 4 Приложения производной Составитель: доцент

    Глава 1. Пределы и непрерывность 1. Числовые множества 1 0. Действительные числа Из школьной математики Вы знаете натуральные N целые Z рациональные Q и действительные R числа Натуральные и целые числа

    Лекция 19 ПРОИЗВОДНАЯ И ЕЕ ПРИЛОЖЕНИЯ. ОПРЕДЕЛЕНИЕ ПРОИЗВОДНОЙ. Пусть имеем некоторую функцию y=f(x), определенную на некотором промежутке. Для каждого значения аргумента xиз этого промежутка функция y=f(x)

    Дифференциальное исчисление Основные понятия и формулы Определение 1 Производной функции в точке называется предел отношения приращения функции к приращению аргумента, при условии, что приращение аргумента

    Тема 8. Показательная и логарифмическая функции. 1. Показательная функция, ее график и свойства В практике часто используются функции y=2 x,y=10 x,y=(1 2x),y=(0,1) x и т. д., т. е. функция вида y=a x,

    44 Пример Найти полную производную сложной функции = sin v cos w где v = ln + 1 w= 1 По формуле (9) d v w v w = v w d sin cos + cos cos + 1 sin sin 1 Найдем теперь полный дифференциал сложной функции f

    Задания для самостоятельного решения. Найдите область определения функции 6x. Найдите тангенс угла наклона к оси абсцисс касательной, проходящей через точку М (;) графика функции. Найдите тангенс угла

    Тема Числовая функция, ее свойства и график Понятие числовой функции Область определения и множество значений функции Пусть задано числовое множество X Правило, сопоставляющее каждому числу X единственное

    Лекция 23 ВЫПУКЛОСТЬ И ВОГНУТОСТЬ ГРАФИКА ФУНКЦИИ ТОЧКИ ПЕРЕГИБА График функции y=f(x) называется выпуклым на интервале (a; b), если он расположен ниже любой своей касательной на этом интервале График

    Тема Теория пределов Практическое занятие Числовые последовательности Определение числовой последовательности Ограниченные и неограниченные последовательности Монотонные последовательности Бесконечно малые

    Числовые функции и числовые последовательности Д. В. Лыткина АЭС, I семестр Д. В. Лыткина (СибГУТИ) математический анализ АЭС, I семестр 1 / 35 Содержание 1 Числовая функция Понятие функции Числовые функции.

    Банк заданий по теме «ПРОИЗВОДНАЯ» МАТЕМАТИКА класс (профиль) Учащиеся должны знать/понимать: Понятие производной. Определение производной. Теоремы и правила нахождения производных суммы, разности, произведения

    Â. À. Äàëèíãåð ÌÀÒÅÌÀÒÈÊÀ: ÎÁÐÀÒÍÛÅ ÒÐÈÃÎÍÎÌÅÒÐÈ ÅÑÊÈÅ ÔÓÍÊÖÈÈ. ÐÅØÅÍÈÅ ÇÀÄÀ УЧЕБНОЕ ПОСОБИЕ ДЛЯ СПО -е издание, исправленное и дополненное Ðåêîìåíäîâàíî Ó åáíî-ìåòîäè åñêèì îòäåëîì ñðåäíåãî ïðîôåññèîíàëüíîãî

    А.В. Землянко Математика. Алгебра и начала анализа Воронеж СОДЕРЖАНИЕ ТЕМА 1. ОСНОВНЫЕ СВОЙСТВА ФУНКЦИИ... 6 1.1. Числовая функция... 6 1.2. График функции... 9 1.3. Преобразование графиков функции...

    Тема. Функция. Способы задания. Неявная функция. Обратная функция. Классификация функций Элементы теории множеств. Основные понятия Одним из основных понятий современной математики является понятие множества.

    Пусть задано числовое множество D R. Если каждому числу x D поставлено в соответствие единственное число y, то говорят, что на множестве D задана числовая функция: y = f (x), x D. Множество D, называется

    Функции нескольких переменных 11. Определение функции нескольких переменных. Предел и непрерывность ФНП 1. Определение функции нескольких переменных ОПРЕДЕЛЕНИЕ. Пусть X = { 1 n i X i R } U R. Функция

    МАТЕМАТИКА ДЛЯ ВСЕХ Ю.Л.Калиновский Contents 1 Графики функций. Часть I.................................... 5 1.1 Введение 5 1.1.1 Понятие множества.............................................. 5 1.1.

    Практическая работа 6 Тема: «Полное исследование функций. Построение графиков» Цель работы: научиться исследовать функции по общей схеме и строить графики. В результате выполнения работы студент должен:

    Глава 8 Функции и графики Переменные и зависимости между ними. Две величины и называются прямо пропорциональными, если их отношение постоянно, т. е. если =, где постоянное число, не меняющееся с изменением

    ЛЕКЦИЯ 2. Операции с подпространствами, число базисов число базисов и число подпространств размерности k. Основные результаты Лекции 2. 1) U V, U + V, dim(u + V). 2) Подсчет числа плоскостей в F 4 2.

    Вопрос 5. Функция, способы задания. Примеры элементарных функций и их графики. Пусть даны два произвольных множества Х и Y. Функция это правило, по которому каждому элемента из множества X можно найти

    Лекция 4 ЧИСЛОВЫЕ ФУНКЦИИ ДЕЙСТВИТЕЛЬНОЙ ПЕРЕМЕННОЙ Понятие функции Способы задания функции Основные свойства функций Сложная функция 4 Обратная функция Понятие функции Способы задания функции Пусть D

    Лекции Глава Функции нескольких переменных Основные понятия Некоторые функции многих переменных хорошо знакомы Приведем несколько примеров Для вычисления площади треугольника известна формула Герона S

    Непрерывность функций Непрерывность функции в точке Односторонние пределы Определение Число A называется пределом функции f(x) слева при стремлении x к a, если для любого числа существует такое число

    Научно-исследовательская работа Математика «Применение экстремальных свойств функции для решения уравнений» Выполнила: Гудкова Елена обучающаяся 11 класса «Г» МБОУ СОШ «Аннинский Лицей» п.г.т. Анна Руководитель:

    Федеральное агентство по образованию ----- САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ АИ Сурыгин ЕФ Изотова ОА Новикова ТА Чайкина МАТЕМАТИКА Элементарные функции и их графики Учебное

    ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Функции одной независимой переменной не охватывают все зависимости, существующие в природе. Поэтому естественно расширить известное понятие функциональной зависимости и ввести

    Функция Понятие функции Способы задания функции Характеристики функции Обратная функция Предел функции Предел функции в точке Односторонние пределы Предел функции при x Бесконечно большая функция 4 Лекция

    Раздел Дифференциальное исчисление функции одной и нескольких переменных Функция действительного аргумента Действительные числа Целые положительные числа называются натуральными Добавим к натуральным

    Сергей А Беляев стр 1 Математический минимум Часть 1 Теоретическая 1 Верно ли определение Наименьшим общим кратным двух целых чисел называется наименьшее число, которое делится на каждое из заданных чисел

    Раздел 2 Теория пределов Тема Числовые последовательности Определение числовой последовательности 2 Ограниченные и неограниченные последовательности 3 Монотонные последовательности 4 Бесконечно малые и

    Дифференцирование неявно заданной функции Рассмотрим функцию (,) = C (C = const) Это уравнение задает неявную функцию () Предположим, мы решили это уравнение и нашли явное выражение = () Теперь можно

    Тестовые задания для подготовки к ЭКЗАМЕНУ по дисциплине «Математика» для студентов заочного отделения Производной функции y=f() называется: f A) B) f C) f f Если в некоторой окрестности точки функция

    ПЕРЕМЕННЫЕ И ПОСТОЯННЫЕ ВЕЛИЧИНЫ В результате измерения физических величин (время, площадь, объем, масса, скорость и т.д.) определяются их числовые значения. Математика занимается величинами, отвлекаясь

    Математический анализ Раздел: Введение в анализ Тема: Понятие функции (основные определения, классификация, основные характеристики поведения) Лектор Рожкова С.В. 2012 г. Литература Пискунов Н.С. Дифференциальное

    Занятие 7 Теоремы о среднем. Правило Лопиталя 7. Теоремы о среднем Теоремы о среднем это три теоремы: Ролля, Лагранжа и Коши, каждая следующая из которых обобщает предыдущую. Эти теоремы называют также

    Лекция подготовлена доц Мусиной МВ Непрерывность функции Пусть функция y = f(x) определена в точке x и в некоторой окрестности этой точки Функция y = f(x) называется непрерывной в точке x, если существует

    ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ Понятие производной, ее геометрический и физический смысл Задачи, приводящие к понятию производной Определение Касательной S к линии y f (x) в точке A x ; f (

    13. Частные производные высших порядков Пусть = имеет и определенные на D O. Функции и называют также частными производными первого порядка функции или первыми частными производными функции. и в общем

    Министерство образования Республики Беларусь УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «ГРОДНЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ЯНКИ КУПАЛЫ» Ю.Ю. Гнездовский, В. Н. Горбузов, П.Ф. Проневич ПОКАЗАТЕЛЬНЫЕ И ЛОГАРИФМИЧЕСКИЕ

    Лекция Глава Множества и операции над ними Понятие множества Понятие множество относится к наиболее первичным понятиям математики не определяемым через более простые Под множеством понимают совокупность

    Лекция 8 Дифференцирование сложной функции Рассмотрим сложную функцию t t t f где ϕ t t t t t t t f t t t t t t t t t Теорема Пусть функции дифференцируемы в некоторой точке N t t t а функция f дифференцируема

    Лекция 3 Экстремум функции нескольких переменных Пусть функция нескольких переменных u = f (x, x) определена в области D, и точка x (x, x) = принадлежит данной области Функция u = f (x, x) имеет

    Вопрос. Неравенства, система линейных неравенств Рассмотрим выражения, которые содержат знак неравенства и переменную:. >, - +х -это линейные неравенств с одной переменной х.. 0 - квадратное неравенство.

    РАЗДЕЛ ЗАДАЧИ С ПАРАМЕТРАМИ Комментарий Задачи с параметрами традиционно являются сложными заданиями в структуре ЕГЭ, требующими от абитуриента не только владения всеми методами и приемам решения различных

    2.2.7. Применение дифференциала к приближенным вычислениям. Дифференциал функции y = зависит от х и является главной частью приращения х. Также можно воспользоваться формулой: dy d Тогда абсолютная погрешность:

    Глава 6 Дифференциальное исчисление функции одной переменной Задачи приводящие к понятию производной Задача о скорости неравномерного прямолинейного движения S - закон неравномерного прямолинейного движения

    Прямая на плоскости Общее уравнение прямой. Прежде чем вводить общее уравнение прямой на плоскости введем общее определение линии. Определение. Уравнение вида F(x,y)=0 (1) называется уравнением линии L

    КОМИТЕТ ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ЛЕНИНГРАДСКОЙ ОБЛАСТИ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ЛЕНИНГРАДСКОЙ ОБЛАСТИ «ВОЛХОВСКИЙ АЛЮМИНИЕВЫЙ КОЛЛЕДЖ» Методическое

    Производная и правила дифференцирования Пусть функция y = f получила приращение y f 0 f 0 соответствующее приращению аргумента 0 Определение Если существует предел отношения приращения функции y к вызвавшему

    ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

    ОБРАТНЫЕ ФУНКЦИИ Задачи, в которых участвуют обратные функции, встречаются в самых различных разделах математики и в ее приложениях Важную область математики составляют обратные задачи в теории интегральных

    Система задач по теме «Уравнение касательной» Определите знак углового коэффициента касательной, проведенной к графику функции y f (), в точках с абсциссами a, b, c а) б) Укажите точки, в которых производная