Понятие числа виды чисел. Числа: натуральные, целые, рациональные, действительные. Обыкновенные и десятичные дроби. Запись числовых множеств

Натуральные числа

Числа, используемые при счете называются натуральными числами. Например, $1,2,3$ и т.д. Натуральные числа образуют множество натуральных чисел, которое обозначают $N$ .Данное обозначение исходит от латинского слова naturalis- естественный.

Противоположные числа

Определение 1

Если два числа отличаются только знаками, их называют в математике противоположными числами.

Например, числа $5$ и $-5$ противоположные числа, т.к. отличаются только знаками.

Замечание 1

Для любого числа есть противоположное число, и притом только одно.

Замечание 2

Число нуль противоположно самому себе.

Целые числа

Определение 2

Целыми числами называют натуральные, противоположные им числа и нуль.

Множество целых чисел включает в себя множество натуральных и противоположных им.

Обозначают целые числа $Z.$

Дробные числа

Числа вида $\frac{m}{n}$ называют дробями или дробными числами. Так же дробные числа можно записывать десятичной форме записи, т.е. в виде десятичных дробей.

Например:$\ \frac{3}{5}$ , $0,08$ и Т.Д.

Так же, как и целые, дробные числа могут быть как положительными, так и отрицательными.

Рациональные числа

Определение 3

Рациональными числами называется множество чисел, содержащее в себе множество целых и дробных чисел.

Любое рациональное число, как целое, так и дробное можно представить в виде дроби $\frac{a}{b}$, где $a$- целое число, а $b$- натуральное.

Таким образом, одно и то же рациональное число можно записать разными способами.

Например,

Отсюда видно, что любое рациональное число может быт представлено в виде конечной десятичной дроби или бесконечной десятичной периодической дроби.

Множество рациональных чисел обозначается $Q$.

В результате выполнения любого арифметического действия над рациональными числами полученный ответ будет рациональным числом. Это легко доказуемо, в силу того, что при сложении, вычитании, умножении и делении обыкновенных дробей получится обыкновенная дробь

Иррациональные числа

В ходе изучения курса математики часто приходится сталкиваться в решении с числами, которые не являются рациональными.

Например, чтобы убедиться в существовании множества чисел, отличных от рациональных решим уравнение $x^2=6$.Корнями этого уравнения будут числа $\surd 6$ и -$\surd 6$. Данные числа не будут являться рациональными.

Так же при нахождении диагонали квадрата со стороной $3$ мы применив теорему Пифагора получим, что диагональ будет равна $\surd 18$. Это число также не является рациональным.

Такие числа называются иррациональными.

Итак, иррациональным числом называют бесконечную десятичную непериодическую дробь.

Одно из часто встречающихся иррациональных чисел- это число $\pi $

При выполнении арифметических действий с иррациональными числами получаемый результат может оказаться и рациональным, так и иррациональным числом.

Докажем это на примере нахождения произведения иррациональным чисел. Найдем:

    $\ \sqrt{6}\cdot \sqrt{6}$

    $\ \sqrt{2}\cdot \sqrt{3}$

Решениею

    $\ \sqrt{6}\cdot \sqrt{6} = 6$

    $\sqrt{2}\cdot \sqrt{3}=\sqrt{6}$

На этом примере видно, что результат может оказаться как рациональным, так и иррациональным числом.

Если в арифметических действиях участвуют рациональное и иррациональные числа одновременно, то в результате получится иррациональное число (кроме, конечно, умножения на $0$).

Действительные числа

Множеством действительных чисел называется множество содержащее множество рациональных и иррациональных чисел.

Обозначается множество действительных чисел $R$. Символически множество действительных чисел можно обозначить $(-?;+?).$

Мы говорили ранее о том, что иррациональным числом называют бесконечную десятичную непериодическую дробь, а любое рациональное число может быт представлено в виде конечной десятичной дроби или бесконечной десятичной периодической дроби, поэтому действительным числом будет являться любая конечная и бесконечная десятичная дробь.

При выполнении алгебраических действий будут выполняться следующие правила

  1. при умножении и делении положительных чисел полученное число будет положительным
  2. при умножении и делении отрицательных чисел полученное число будет положительным
  3. при умножении и делении отрицательного и положительного чисел полученное число будет отрицательным

Также действительные числа можно сравнивать друг с другом.

Найдите на числовой окружности точки с данной абсциссой. Координаты. Свойство координат точек. Центр числовой окружности. От окружности к тригонометру. Найдите на числовой окружности точки. Точки с абсциссой. Тригонометр. На числовой окружности укажите точку. Числовая окружность на координатной плоскости. Числовая окружность. Точки с ординатой. Назвать координату точки. Назвать линию и координату точки.

««Производные» 10 класс алгебра» - Применение производной для исследования функций. Производная равна нулю. Найдите точки. Обобщаем информацию. Характер монотонности функции. Применение производной к исследованию функций. Теоретическая разминка. Закончите формулировки утверждений. Выберите верное утверждение. Теорема. Сравните. Производная положительна. Сравните формулировки теорем. Функция возрастает. Достаточные условия экстремума.

««Тригонометрические уравнения» 10 класс» - Значения из промежутка. X= tg х. Укажите корни. Верно ли равенство. Серии корней. Уравнение ctg t = a. Определение. Cos 4x. Найти корни уравнения. Уравнение tg t = a. Sin х. Имеет ли смысл выражение. Sin x =1. Не делай никогда того, чего не знаешь. Продолжите фразу. Сделаем выборку корней. Решите уравнение. Ctg x = 1. Тригонометрические уравнения. Уравнение.

«Алгебра «Производные»» - Уравнение касательной. Происхождение терминов. Решить задачу. Производная. Материальная точка. Формулы дифференцирования. Механический смысл производной. Критерии оценок. Функция производная. Касательная к графику функции. Определение производной. Уравнение касательной к графику функции. Алгоритм отыскания производной. Пример нахождения производной. Структура изучения темы. Точка движется прямолинейно.

«Кратчайший путь» - Путь в орграфе. Пример двух разных графов. Ориентированные графы. Примеры ориентированных графов. Достижимость. Кратчайший путь из вершины A в вершину D. Описание алгоритма. Преимущества иерархического списка. Взвешенные графы. Путь в графе. Программа “ProGraph”. Смежные вершины и рёбра. Степень вершины. Матрица смежности. Длина пути во взвешенном графе. Пример матрицы смежности. Нахождение кратчайшего пути.

«История тригонометрии» - Якоб Бернулли. Техника оперирования с тригонометрическими функциями. Учение об измерении многогранников. Леонард Эйлер. Развитие тригонометрии с XVI века до нашего времени. Ученику приходится встречаться с тригонометрией трижды. До сих пор тригонометрия формировалась и развивалась. Построение общей системы тригонометрических и примыкающих к ним знаний. Проходит время, и тригонометрия возвращается к школьникам.

Натуральные числа - это те числа, с которых когда-то всё началось. И сегодня это первые числа, с которыми встречается в своей жизни человек, когда в детстве учится считать на пальцах или счетных палочках.

Определение: натуральными называют числа, которые используют для счета предметов (1, 2, 3, 4, 5, ...) [Число 0 не является натуральным. Оно и в истории математики имеет свою отдельную историю и появилось много позже натуральных чисел.]

Множество всех натуральных чисел (1, 2, 3, 4, 5, ...) обозначают буквой N.

Целые числа

Научившись считать, следующее, что мы делаем - это учимся производить над числами арифметические действия. Обычно сначала (на счетных палочках) учатся выполнять сложение и вычитание.

Со сложением всё понятно: сложив любые два натуральных числа, в результате всегда получим тоже натуральное число. А вот в вычитании обнаруживаем, что из меньшего отнять большее так, чтобы в результате получилось натуральное число, мы не можем. (3 − 5 = чему?) Здесь возникает идея отрицательных чисел. (Отрицательные числа уже не являются натуральными)

На этапе возникновения отрицательных чисел (а они появились позже дробных) существовали и их противники, считавшие их бессмыслицей. (Три предмета можно показать на пальцах, десять можно показать, тысячу предметов можно представить по аналогии. А что такое "минус три мешка"? — В то время числа хоть уже и использовались сами по себе, в отрыве от конкретных предметов, количество которых они обозначают, всё ещё были в сознании людей гораздо ближе к этим конкретным предметам, чем сегодня.) Но, как и возражения, так и основной аргумент в пользу отрицательных чисел, пришел из практики: отрицательные числа позволяли удобно вести счет долгам. 3 − 5 = −2 — у меня было 3 монеты, я потратила 5. Значит, у меня не просто закончились монеты, но и 2 монеты я кому-то должна. Если верну одну, долг изменится −2+1=−1, но тоже может быть представлен отрицательным числом.

В итоге, отрицательные числа появились в математике, и теперь у нас есть бесконечное количество натуральных чисел (1, 2, 3, 4, ...) и есть такое же количество им противоположных (−1, −2, −3, −4, ...). Добавим к ним ещё 0. И множество всех этих чисел будем называть целыми.

Определение: Натуральные числа, им противоположные и нуль составляют множество целых чисел. Оно обозначается буквой Z.

Любые два целых числа можно вычесть друг из друга или сложить и получить в результате целое число.

Идея сложения целых чисел уже предполагает возможность умножения, как просто более быстрого способа выполнения сложения. Если у нас есть 7 мешков по 6 килограмм, мы можем складывать 6+6+6+6+6+6+6 (семь раз прибавлять к текущей сумме по 6), а можем просто помнить, что такая операция всегда будет давать в результате 42. Как и сложение шести семерок 7+7+7+7+7+7 тоже всегда будет давать 42.

Результаты операции сложения определенного числа самого с собой определенное количество раз для всех пар чисел от 2 до 9 выписываются и составляют таблицу умножения. Для умножения целых чисел больше 9 придумывается правило умножения в столбик. (Которое распространяется и на десятичные дроби, и которое будет рассматриваться в одной из следующих статей.) При умножении любых двух целых чисел друг на друга всегда получим в результате целое число.

Рациональные числа

Теперь деление. По аналогии с тем, как вычитание является обратной операцией для сложения, приходим к идее деления как обратной операции для умножения.

Когда у нас было 7 мешков по 6 килограмм, с помощью умножения мы легко посчитали, что общий вес содержимого мешков составляет 42 килограмма. Представим себе, что мы высыпали всё содержимое всех мешков в одну общую кучу массой 42 килограмма. А потом передумали, и захотели распределить содержимое обратно по 7 мешкам. Сколько килограмм при этом попадет в один мешок, если будем распределять поровну? – Очевидно, что 6.

А если захотим распределить 42 килограмма по 6 мешкам? Тут мы подумаем о том, что те же общие 42 килограмма могли бы получиться, если бы мы высыпали в кучу 6 мешков по 7 килограмм. И значит при делении 42 килограмм на 6 мешков поровну получим в одном мешке по 7 килограмм.

А если разделить 42 килограмма поровну по 3 мешкам? И здесь тоже мы начинаем подбирать такое число, которое при умножении на 3 дало бы 42. Для «табличных» значений, как в случае 6 ·7=42 => 42:6=7, мы выполняем операцию деления, просто вспоминая таблицу умножения. Для более сложных случаев используется деление в столбик, которое будет рассмотрено в одной из следующих статей. В случае 3 и 42 можно «подбором» вспомнить, что 3 ·14 = 42. Значит, 42:3=14. В каждом мешке будет по 14 килограмм.

Теперь попробуем разделить 42 килограмма поровну на 5 мешков. 42:5=?
Замечаем, что 5 ·8=40 (мало), а 5·9=45 (много). То есть, ни по 8 килограмм в мешке, ни по 9 килограмм, из 5 мешков мы 42 килограмма никак не получим. При этом понятно, что в реальности разделить любое количество (крупы, например,) на 5 равных частей нам ничего не мешает.

Операция деления целых чисел друг на друга не обязательно дает в результате целое число. Так мы пришли к понятию дроби. 42:5 = 42/5 = 8 целых 2/5 (если считать в обыкновенных дробях) или 42:5=8,4 (если считать в десятичных дробях).

Обыкновенные и десятичные дроби

Можно сказать, что любая обыкновенная дробь m/n (m – любое целое, n – любое натуральное) представляет собой просто специальную форму записи результата деления числа m на число n. (m называют числителем дроби, n – знаменателем) Результат деления, например, числа 25 на число 5 тоже можно записать в виде обыкновенной дроби 25/5. Но в этом нет необходимости, так как результат деления 25 на 5 может быть записан просто целым числом 5. (И 25/5 = 5). А вот результат деления числа 25 на число 3 уже не может быть представлен целым числом, поэтому здесь и возникает необходимость использования дроби, 25:3=25/3. (Можно выделить целую часть 25/3= 8 целых 1/3. Более подробно обыкновенные дроби и операции с обыкновенными дробями будут рассмотрены в следующих статьях.)

Обыкновенные дроби хороши тем, что, чтобы представить такой дробью результат деления любых двух целых чисел, нужно просто записать делимое в числитель дроби, а делитель в знаменатель. (123:11=123/11, 67:89=67/89, 127:53=127/53, …) Затем по возможности сократить дробь и/или выделить целую часть (эти действия с обыкновенными дробями будут подробно рассмотрены в следующих статьях). Проблема в том, что производить арифметические действия (сложение, вычитание) с обыкновенными дробями уже не так удобно, как с целыми числами.

Для удобства записи (в одну строку) и для удобства вычислений (с возможностью вычислений в столбик, как для обычных целых чисел) кроме обыкновенных дробей придуманы ещё и десятичные дроби. Десятичная дробь – это специальным образом записанная обыкновенная дробь со знаменателем 10, 100, 1000 и т.п. Например, обыкновенная дробь 7/10 – это то же, что и десятичная дробь 0,7. (8/100 = 0,08; 2 целых 3/10=2,3; 7 целых 1/1000 = 7, 001). Переводу обыкновенных дробей в десятичные и наоборот будет посвящена отдельная статья. Операциям с десятичными дробями – другие статьи.

Любое целое число может быть представлено в виде обыкновенной дроби со знаменателем 1. (5=5/1; −765=−765/1).

Определение: Все числа, которые могут быть представлены в виде обыкновенной дроби, называют рациональными числами. Множество рациональных чисел обозначают буквой Q.

При делении любых двух целых чисел друг на друга (кроме случая деления на 0) всегда получим в результате рациональное число. Для обыкновенных дробей есть правила сложения, вычитания, умножения и деления, позволяющие произвести соответствующую операцию с любыми двумя дробями и получить в результате также рациональное число (дробь или целое).

Множество рациональных чисел – это первое из рассмотренных нами множеств, в котором можно и складывать, и вычитать, и умножать, и делить (кроме деления на 0), никогда не выходя за пределы этого множества (то есть, всегда получая в результате рационально число).

Казалось бы, других чисел не существует, все числа рациональные. Но и это не так.

Действительные числа

Существуют такие числа, которые нельзя представить в виде дроби m/n (где m-целое, n-натуральное).

Какие же это числа? Мы ещё не рассмотрели операцию возведения в степень. Например, 4 2 =4 ·4 = 16. 5 3 =5 ·5 ·5=125. Как умножение представляет собой более удобную форму записи и вычисления сложения, так и возведение в степень – это форма записи умножения одного и того же числа самого на себя определенное количество раз.

Но теперь рассмотрим операцию, обратную возведению в степень – извлечение корня. Квадратный корень из 16 – это число, которое в квадрате даст 16, то есть число 4. Квадратный корень из 9 – это 3. А вот квадратный корень из 5 или из 2, например, не может быть представлен рациональным числом. (Доказательство этого утверждения, другие примеры иррациональных чисел и их историю можно посмотреть, например, в Википедии)

В ГИА в 9 классе есть задание на определение того, является ли число, содержащее в своей записи корень, рациональным или иррациональным. Задача заключается в том, чтобы попытаться преобразовать это число к виду, не содержащему корень (используя свойства корней). Если от корня не удается избавиться, то число иррациональное.

Другим примером иррационального числа является число π, знакомое всем из геометрии и тригонометрии.

Определение: Рациональные и иррациональные числа вместе называют действительными (или вещественными) числами. Множество всех действительных чисел обозначают буквой R.

В действительных числах, в отличии от рациональных, мы можем выразить расстояние между любыми двумя точками на прямой или на плоскости.
Если нарисовать прямую и выбрать на ней две произвольные точки или выбрать две произвольные точки на плоскости, то может так получиться, что точное расстояние между этими точками невозможно выразить рациональным числом. (Пример – гипотенуза прямоугольного треугольника с катетами 1 и 1 по теореме Пифагора будет равна корню из двух – то есть иррациональному числу. Сюда же относится точная длина диагонали тетрадной клетки (длина диагонали любого идеального квадрата с целыми сторонами).)
А в множестве действительных чисел любые расстояния на прямой, в плоскости или в пространстве могут быть выражены соответствующим действительным числом.

Понятие действительного числа: действительное число - (вещественное число), всякое неотрицательное или отрицательное число либо нуль. С помощью действительных чисел выражают измерения каждой физической величины .

Вещественное , или действительное число возникло из необходимости измерений геометрической и физической величин мира. Кроме того, для проведения операций извлечения корня, вычисления логарифма, решения алгебраических уравнений и т.д.

Натуральные числа образовались с развитием счета, а рациональные с потребностью управлять частями целого, то вещественные числа (действительные) используются для измерений непрерывных величин. Т.о., расширение запаса чисел, которые рассматриваются, привело к множеству вещественных чисел, которое кроме рациональных чисел состоит из других элементов, называемых иррациональные числа .

Множество действительных чисел (обозначается R ) - это множества рациональных и иррациональных чисел собранные вместе.

Действительные числа делят на рациональные и иррациональные .

Множество вещественных чисел обозначают и зачастую называют вещественной или числовой прямой . Вещественные числа состоят из простых объектов: целых и рациональных чисел .

Число, которое возможно записать как отношение, где m - целое число, а n - натуральное число, является рациональным числом .

Всякое рациональное число легко представить как конечную дробь либо бесконечную периодическую десятичную дробь.

Пример ,

Бесконечная десятичная дробь , это десятичная дробь, у которой после запятой есть бесконечное число цифр.

Числа, которые нельзя представить в виде , являются иррациональными числами .

Пример:

Всякое иррациональное число легко представить как бесконечную непериодическую десятичную дробь.

Пример ,

Рациональные и иррациональные числа создают множество действительных чисел. Всем действительным числам соответствует одна точка координатной прямой, которая называется числовая прямая .

Для числовых множеств используются обозначения:

  • N - множество натуральных чисел;
  • Z - множество целых чисел;
  • Q - множество рациональных чисел;
  • R - множество действительных чисел.

Теория бесконечных десятичных дробей.

Вещественное число определяется как бесконечная десятичная дробь , т.е.:

±a 0 ,a 1 a 2 …a n …

где ± есть один из символов + или −, знак числа,

a 0 — целое положительное число,

a 1 ,a 2 ,…a n ,… — последовательность десятичных знаков, т.е. элементов числового множества {0,1,…9}.

Бесконечную десятичную дробь можно объяснить как число, которое на числовой прямой находится между рациональными точками типа:

±a 0 ,a 1 a 2 …a n и ±(a 0 ,a 1 a 2 …a n +10 −n) для всех n=0,1,2,…

Сравнение вещественных чисел как бесконечных десятичных дробей происходит поразрядно. Например , предположим даны 2 положительны числа:

α =+a 0 ,a 1 a 2 …a n …

β =+b 0 ,b 1 b 2 …b n …

Если a 0 0, то α<β ; если a 0 >b 0 то α>β . Когда a 0 =b 0 переходим к сравнению следующего разряда. И т.д. Когда α≠β , значит после конечного количества шагов встретится первый разряд n , такой что a n ≠b n . Если a n n , то α<β ; если a n >b n то α>β .

Но при этом нудно обратить внимание на то, что число a 0 ,a 1 a 2 …a n (9)=a 0 ,a 1 a 2 …a n +10 −n . Поэтому если запись одного из сравниваемых чисел, начиная с некоторого разряда это периодическая десятичная дробь, у которой в периоде стоит 9, то её нужно заменить на эквивалентную запись, с нулем в периоде.

Арифметические операции с бесконечными десятичными дробями это непрерывное продолжение соответствующих операций с рациональными числами. Например , суммой вещественных чисел α и β является вещественное число α+β , которое удовлетворяет таким условиям:

a′,a′′,b′,b′′ Q(a′ α a′′) (b′ β b′′) (a′+b′ α + β a′′+b′′)

Аналогично определяет операция умножения бесконечных десятичных дробей.

Данная статья посвящена теме "Действительные числа". В статье дается определение действительных чисел, иллюстрируется их положение на координатной прямой, рассматриваются способы задания действительных чисел числовыми выражениями.

Определение действительных чисел

Целые и дробные числа вместе составляют рациональные числа. В свою очередь, рациональные и иррациональные числа составляют действительные числа. Как дать определение, что такое действительные числа?

Определение 1

Действительные числа - это рациональные и иррациональные числа. Множество действительных чисел обозначается через R.

Данное определение можно записать иначе с учетом следующего:

  1. Рациональные числа можно представить в виде конечной десятичной дроби или бесконечной периодической десятичной дроби.
  2. Иррациональные числа представляют собой бесконечные непериодические десятичные дроби.
Определение 2

Действительные числа - числа, которые можно записать в виде конечной или бесконечной (периодической или непериодической) десятичной дроби.

Действительные числа - это любые рациональные и иррациональные числа. Приведем примеры таких чисел: 0 ; 6 ; 458 ; 1863 ; 0 , 578 ; - 3 8 ; 26 5 ; 0 , 145 (3) ; log 5 12 .

Нуль также является действительным числом. Согласно определению, существуют как положительные, так и отрицательные действительные числа. Нуль является единственным действительным числом, которое не положительно и не отрицательно.

Еще одно название для действительных чисел - вещественные числа. Эти числа позволяют описывать значение непрерывно меняющейся величины без введения эталонного (единичного) значения этой величины.

Координатная прямая и действительные числа

Каждой точке не координатной прямой соответствует определенное и единственное действительное число. Иными словами, действительные числа занимают всю координатную прямую, а между точками кривой и числами присутствует взаимно-однозначное соответствие.

Представления действительных чисел

Под определение дейситвительных чисел попадают:

  1. Натуральные числа.
  2. Целые числа.
  3. Десятичные дроби.
  4. Обыкновенные дроби.
  5. Смешанные числа.

Также действительные числа часто представляются в виде выражений со степенями, корнями и логарифмами. Сумма, разность произведение и частное действительных чисел также являются действительными числами.

Значение любого выражения, составленного из действительных чисел, также будет являться действительным числом.

Например, значения выражений sin 2 3 π · e - 2 8 5 · 10 log 3 2 и t g 6 7 6 693 - 8 π 3 2 - действительные числа.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter