Как понять что в растворе есть осадок. Определение возможности выпадения осадка малорастворимого электролита в обменной реакции. Способы усиления гидролиза

Произведение растворимости является одной из основных характеристик осадка. Пользуясь этой характеристикой, можно изменять растворимость осадка, рассчитывать оптимальные условия осаждения, предвидеть, какими реакциями осаждения лучше пользоваться для определения тех или иных ионов.

Из уравнения (3.1.) вытекают условия образования в растворе осадка:

Осадок малорастворимого электролита образуется только в том случае, когда произведение концентраций его ионов (П) в растворе превышает величину произведения растворимости этого соединения, т.е. когда раствор становится пересыщенным относительно данного малорастворимого соединения. Из ненасыщенного раствора осадок не выделяется, происходит растворение твёрдой фазы.

ПРИМЕР 3.6 Определить, образуется ли осадок PbCО 3 при смешении 400 мл 0,001 М Pb(NO) 2 и 100 мл 0,01 М К 2 СО 3 .

Решение: Найдём молярные концентрации веществ в момент смешения по формуле:

Концентрации ионов, образующих осадок, равны:

См 2 (Pb(NO) 2), т.к. при диссоциации из 1 моль соли образуется 1 моль ионов свинца.

[СО 3 2- ]= См 2 (К 2 СО 3), т.к. при диссоциации из 1 моль соли образуется 1 моль ионов СО 3 2- .

Отсюда ПР = ·[СО 3 2- ]= 0,0008·0,002=1,6·10 -5 .

Полученное значение больше ПРPbCO 3 = 7,5·10 -14 , следовательно, раствор пересыщен относительно карбоната свинца и осадок образуется.

ПРИМЕР 3.7 При каком соотношении концентраций ионов Ва 2+ и Рb 2+ их карбонаты при введении ионов СО 3 2- будут выпадать одновременно? ПРВаСО 3 =7∙10 -9 , ПРРbСО 3 =1,5∙10 -13 .

Решение: Концентрацию вводимых карбонат-ионов обозначим через ССО 3 2- , тогда:

Итак, карбонаты бария и свинца будут выпадать одновременно из раствора, если СВа 2+ >СРb 2+ в 46700 раз. Если отношение СВа 2+ / СPb 2+ >46700, то первым из раствора будет выпадать ВаСО 3 до тех пор, пока отношение СВа 2+ / СPb 2+ не будет равным 46700. И только после этого начнется одновременное выпадение осадков. Если же отношение концентрации ионов бария и свинца меньше 46700, то первым начнет осаждаться карбонат свинца. Осаждение карбоната свинца будет протекать до тех пор, пока отношение СВа 2+ / СPb 2+ не достигнет значения, при котором ВаСО 3 и РbСО 3 будут осаждаться одновременно.

Знание численной величины произведения растворимости позволяет сделать прогноз, будет ли выпадать осадок малорастворимого соединения в результате обменной реакции. Например, для того чтобы при сливании растворов AgNO 3 и K 3 PO 4 выпал осадок Ag 3 PO 4 в результате обменной реакции

3 Ag + + PO 4 3– ® Ag 3 PO 4 ¯

необходимо, чтобы образующийся раствор был перенасыщен ионами серебра и фосфат-ионами. Важно понимать, что ПР – это характеристика, относящаяся к насыщенному раствору, поэтому выпадение осадка произойдёт в том случае, если, в полученном растворе произведение концентраций (ПК) ионов, образующих осадок, больше, чем произведение растворимости (ПР) или, более кратко, условие выпадения осадка: ПК > ПР .

Пример 5.2. Определить будет ли выпадать осадок Ag 3 PO 4 при сливании 1 литра раствора Na 3 PO 4 с концентрацией 5·10 –5 моль/л и 1 литра раствора AgNO 3 с концентрацией 2·10 –3 моль/л. ПР(Ag 3 PO 4) = 1,3·10 –20 .

При решении подобных задач необходимо в первую очередь найти в исходных растворах число моль тех ионов, которые могут образовать осадок (в данном случае – это ионы Ag + и PO 4 3–).

В растворе Na 3 PO 4: n(Na 3 PO 4) = C(Na 3 PO 4)·V раствора (Na 3 PO 4);

n(Na 3 PO 4) = 5·10 –5 моль/л · 1 л = 5·10 –5 моль = n(PO 4 3–).

В растворе AgNO 3: n(AgNO 3) = C(AgNO 3)·V раствора AgNO 3 ;

n(AgNO 3) = 2·10 –3 моль/л · 1 л = 2·10 –3 моль = n(Ag +).

В растворе, образующемся после смешивания, число моль ионов Ag + и PO 4 3– до образования осадка будет таким же, как и в исходных растворах, а объём раствора станет равен 2 литрам:

V общий ≈ V раствора Na 3 PO 4 + V раствора AgNO 3 = 1 л + 1 л = 2 л.

C(Ag +) = n(Ag +) / V общий = 2·10 –3 моль / 2 л = 1·10 –3 моль/л;

C(PO 4 3–) = n(PO 4 3–) / V общий = 5·10 –5 моль / 2 л = 2,5·10 –5 моль/л.

Образование осадка происходит в результате реакции, протекающей по уравнению 3 Ag + + PO 4 3– ® Ag 3 PO 4 ¯, поэтому произведение концентраций (ПК) ионов Ag + и PO 4 3– в полученном растворе следует рассчитывать по уравнению:

ПК = C 3 (Ag +)·C(PO 4 3–) = (1·10 –3) 3 ·2,5·10 –5 = 2,5·10 –14 .


Так как ПК = 2,5·10 –14 > ПР(Ag 3 PO 4) = 1,3·10 –20 , раствор перенасыщен ионами Ag + и·PO 4 3– , следовательно, осадок Ag 3 PO 4 образуется.

Пример 5.3. Определить будет ли выпадать осадок PbCl 2 при сливании 200 мл 0,005 М раствора Pb(NO 3) 2 и 300 мл 0,01М раствора NaCl ПР(PbCl 2) = 1,6·10 –5 .

Расчёт количеств ионов Pb 2+ и Cl – в исходных растворах:

В растворе Pb(NO 3) 2: n(Pb(NO 3) 2) = C(Pb(NO 3) 2)·V раствора (Pb(NO 3) 2);

n(Pb(NO 3) 2) = 0,005 моль/л · 0,2 л = 0,001 моль = n(Pb 2+).

В растворе NaCl: n(NaCl) = C(NaCl)·V раствора NaCl;


n(NaCl) = 0,01 моль/л · 0,3 л = 0,003 моль = n(Cl –).

В растворе, образующемся после смешивания, число моль ионов Pb 2+ и Cl – до образования осадка будет таким же, как и в исходных растворах, а объём раствора станет равен 0,5 литра:

V общий ≈ V раствора Pb(NO 3) 2 + V раствора NaCl = 0,2 л + 0,3 л = 0,5 л.

Концентрации ионов Ag + и PO 4 3– в полученном растворе будут следующими:

C(Pb 2+) = n(Pb 2+) / V общий = 0,001 моль / 0,5 л = 0,002 моль/л = 2·10 –3 моль/л;

C(Cl –) = n(Cl –) / V общий = 0,003 моль / 0,5 л = 0,006 моль/л = 6·10 –3 моль/л.

Образование осадка происходит в результате реакции, протекающей по уравнению Pb 2+ + 2 Cl – ® PbCl 2 ¯, поэтому произведение концентраций (ПК) ионов Pb 2+ и Cl – в полученном растворе следует рассчитывать по уравнению:

ПК = C(Pb 2+)·C 2 (Cl –) = 2×10 –3 ×(6·10 –3) 2 = 7,2·10 –8 .

Так как ПК = 7,2·10 –8 < ПР(PbCl 2) = 1,6·10 –5 , образовавшийся раствор не насыщен ионами Pb 2+ и Cl – , и осадок PbCl 2 не образуется.

В задании № 7 (таблица 5.2) студентам предлагается определить возможность выпадения осадка при смешивании двух растворов электролитов.

Если произведение концентраций ионов (ионное произ­ведение) труднорастворимого электролита меньше его произведения растворимости, раствор является нена­сыщенным. В тот момент, когда ионное произведение достигнет величины ПР данного электролита, раствор станет.насыщенным относительно этого электролита. Если ионное произведение превысит величину ПР, начинается выпадение осадка:

i"

ii =nPA g ci -насыщенный раствор;

: >nP Ag ci -пересыщенный [раствор.

Осадок образуется в том случае, когда произведение концентраций. ионов малорастворимого электролита превысит величину произведения растворимости электро­лита при данной температуре.

Когда ионное произведение станет равным величине ПР, выпадение осадка прекращается. Зная объем и кон­центрацию смешиваемых растворов, можно рассчитать, будет ли выпадать осадок образующейся соли.

Пример. Выпадает ли осадок при смешении равных объемов 0,2 М растворов РЬ(.ЫОз) 2 и NaCl? ПРрьс1 2 =2,4-10~ 4 .

Решение. При смешении объем раствора возрастет вдвое и концентрация каждого иэ> веществ уменьшится вдвое, т. е. станет 0,1 М или 1-Ю -1 моль/л. Таковы же будут концентрации РЬ 2 + и С1~. Следовательно

[РЬ 2 +] [СГ] 2 = 1 10- 1 -(1 Ю- 1) 2 = Ы0-».

Полученная величина превышает ПРрьа 2 (2,4-Ю -4). Поэтому часть соли PbCfo выпадет в осадок.

Из всего сказанного выше мы можем сделать вывод о влиянии различных факторов на образование осадков.

1. Влияние концентрации растворов. Трудиораство-римый электролит с достаточно большой величиной ‘ПР нельзя осадить из разбавленных растворов. Например, осадок РЬСЬ не будет выпадать при смешении равных объемов 0,1 М растворов Pb(N0 3)2 и NaCl.

При смешении равных объемов концентрации каждо­го из веществ станут 0,1: 2 = 0,05 М или 5-10 ~ 2 моль/л. Ионное произведение

[РЬ 2 +] [СГ] 2 = 5- Ю- 2 (5- Ю- 2) 2 = 12,5-10-».

Полученная величина меньше ПР Р ьс1 2 . следовательно выпадения осадка не произойдет.

2. Влияние количества осадителя. Для возможно более полного осаждения употребляют избыток осадителя.
Например, осаждаем соль ВаС0 3:

ВаС1 2 + Na 2 C0 3 = BaC0 3 J + 2NaCl

После прибавления эквивалентного количества Ыа 2 СОз в растворе остаются ионы Ва 2+ , концентрация которых обусловлена величиной ПР. Повышение концентрации ионов СО!», вызванное прибавлением избытка осадителя (Na2C0 3), повлечет за собой соответственное уменьше­ние концентрации ионов Ва 2+ в растворе, т. е. увеличит полноту осаждения этого иона. Однако большого избыт­ка осадителя следует избегать по ряду причин (образо­вание комплексных солей, кислых солей и пр.). На прак­тике обычно употребляют не более чем полуторный из­быток осадителя.

Большое значение имеет степень диссоциации осади­теля. Концентрация ионов, вступающих в реакцию, у слабого электролита во ‘много раз меньше концентрации самого электролита, а следовательно, осаждение мало-диссоциированным реактивом будет гораздо менее пол­ным.

3. Влияние одноименного иона. Растворимость труднорастворимых электролитов понижается в присутствии
других сильных электролитов, имеющих одноименные ионы.

Если к ненасыщенному раствору BaS0 4 прибавлять понемногу раствор Na 2 S04, то ионное произведение, которое ‘было сначала меньше nP Ba so 4 (1,1-Ю -10), постепенно достигнет ПР и превысит его. Начнется выпадение осадка.

Соли с одноименным ионом понижают растворимость солей с довольно большой растворимостью.

4. Солевой эффект. Соли, не имеющие одноименного иона, тоже влияют на растворимость электролитов, но влияни в данном случае противоположное: растворимость электролита повышается. Так, например, раство римость PbS0 4 повышается в присутствии нитратов калия или натрия, а растворимость AgCl повышается в присутствии сульфатов «атрия или калия. Описанное явление называется солевым эффектом.

5. Влияние температуры. Произведение растворимо­сти является постоянной величиной при постоянной тем­пературе. С увеличением температуры величина произ­ведения растворимости возрастает, поэтому осаждение, как правило, проводят из холодных растворов. Осаж­дение из горячих растворов проводят лишь тогда, когда температура благоприятно влияет на характер осадка (переход из аморфного состояния в кристаллическое, предотвращение образования коллоидных растворов и т. д.).

Осадок малорастворимого электролита образуется тогда, когда после смешивания растворов реагентов произведение молярных концентраций веществ катионов и анионов буде большим, чем ПР осадка при данной температуре (ИП > ПР осадка):

þ [А + ] а ·[В - ] b > ПР(А а В b ) – образование осадка (пересыщенный раствор, преобладает процесс осаждения, процесс растворения термодинамически невозможен). При небольшом превышении ПР раствор стает пересыщенным, но осадок некоторое время не выпадает.

þ [А + ] а ·[В - ] b = ПР(А а В b ) – осадок не выпадает (насыщенный раствор, динамическое равновесие).

þ [А + ] а ·[В - ] b < ПР(А а В b ) – растворение осадка (ненасыщенный раствор).

Осаждение можно считать практически полным, если в растворе остаётся такое количество вещества осаждаемых ионов, которое не мешает в дальнейших операциях разделения и выявления ионов. (ПР ≠ 0, осаждение никогда не бывает полным).

Для более полного осаждения к раствору добавляют избыток реагента-осадителя, но большой избыток осадителя вызывает растворение осадка (солевой эффект).

Влияние электролитов на растворимость осадков:

Ø Растворимость малорастворимого вещества в присутствии других электролитов, имеющих с ним общие ионы, меньше растворимости в чистой воде;

Ø Растворимость малорастворимого осадка в воде увеличивается при добавлении к нему раствора сильного электролита, который не содержит общего иона с осадком (солевой эффект ).

Солевой эффект – это повышение растворимости малорастворимых электролитов, находящихся в равновесии с осадком, при добавлении к ним сильных электролитов, которые не содержат одноименных ионов с осадком.

Растворимость малорастворимого электролита в присутствии другого электролита, не содержащего с ним одноименных ионов, увеличивается, что объясняется увеличением ионной силы растворы и уменьшением коэффициента активности каждого из ионов.

Для плохо растворимого электролита: ДР(А а В b ) = [А + ] а · [В - ] b ∙ f (А +) ∙f (B -),

где f (А +) и∙f (B -) – коэффициенты активности ионов.



Так как произведение растворимости – величина постоянная, поэтому при увеличении ионной силы раствора концентрация ионов малорастворимого электролита увеличивается, что приводит к увеличению растворимости осадка.

Ø Чем меньше тенденция к переходу осадка в раствор, тем меньше произведение растворимости и растворимость соответствующего соединения;

Ø Направление реакции обмена между двумя электролитами в растворе определяется возможностью образования между ионами малорастворимого соединения, выпадающего в осадок (чем меньшая растворимость образованного малорастворимого соединения, тем сильнее смещено равновесие в сторону её образования).

Наряду с образованием осадка в качественном анализе большое значение имеет и растворение осадка, который является обратным процессу образования:

СаSO 4 (твердая соль) Са 2+ + SO 4 2- (ионы в растворе)

Сдвиг гетерогенного равновесия вправо может происходить в следующих случаях:

ü происходит связывание ионов в растворе в другой, менее растворимый осадок;

Растворение осадка не происходит, но такая операция позволяет определить в растворе анион или катион, входящий в первоначальный осадок. Соединение, которым проводится обработка, должно быть хорошо растворимо и полностью диссоциировано на ионы.

СdC 2 O 4 (ПР = 2,2·10 -8) + Рb(NO 3) 2 ↔ PbC 2 O 4 (ПР = 8,3·10 -12) + Сd 2+ + 2NO 3 - ;

ü происходит реакция комплексообразования с участием ионов металла ;

ü анион переходит в малодиссоциирующую кислоту ;

ü происходит восстановление или окисление ионов .

Растворимость осадков зависит от:

a Концентрации ионов водорода (растворимость осадков в кислотах).

Диссоциация малорастворимого соединения: ВаСО 3 « Ва 2+ + СО 3 2-

При действии на осадок ВаСО 3 кислоты (ионов Н +) равновесие между осадком и раствором смещается вправо (согласно принципу Ле Шателье) потому, что карбонат-ион связывается с ионами водорода с образованием слабой угольной кислоты:

2Н + + СО 3 2- = Н 2 СО 3 ,

Которая разлагается с выделением СО 2 ; соответственно уменьшается концентрация карбонат-ионов СО 3 2- . Как результат – увеличение растворимости осадка ВаСО 3 .

Действие кислоты на осадок зависит от:

· Значения произведения растворимости малорастворимой соли (чем больше ПР соли, тем большая растворимость осадка этой соли);

· Величины константы диссоциации образованной слабой кислоты (чем меньше К дис. слабой кислоты, тем большая растворимость осадка).

a Температуры

Если растворимость вещества в воде сопровождается поглощением теплоты, то повышение температуры вызывает увеличение растворимости осадка (принцип Ле Шателье) – осаждение необходимо проводить на холоде.

Например, растворимость РbCI 2 при комнатной температуре равна 10,9г/л, а при 100 С – 333,8г/л.

a Природы растворителя

При добавлении к воде органических растворителей растворимость неорганических солей, как правило, уменьшается: растворимость полярных веществ в полярных растворителях больше, чем в неполярных.

Применение правила произведения растворимости в аналитической химии для:

Ø решения вопросов образования и растворения осадков;

Ø вычисления растворимости малорастворимых соединений (количество молей вещества, содержащихся в 1л насыщенного раствора при данной температуре):

S(А а В b ) = , [S] ‑ [моль/л]

Ø решения вопросов последовательности образования и выпадения осадков (действие групповых реактивов).

Дробное осаждение – это метод, с помощью которого одним и тем же осадителем последовательно разделяют несколько ионов, пользуясь разными величинами произведения растворимости образованных соединений. В качественном анализе используют в тех случаях, когда осадки отличаются по внешнему виду (окрашивание).

Сущность: сначала выпадает в осадок соединение, произведение растворимости которого имеет меньшую величину.

Гидролиз солей

Гидролиз – это обменное взаимодействие веществ с водой, при которой составные части этого вещества соединяются с составными частями воды. Гидролизу могут подвергаться химические соединения разных классов: соли, жиры, углеводы, белки.

Сущность процесса гидролиза: ионы соли связывают составные части воды (Н + та ОН -) с образованием малодиссоциированного электролита. Вследствие этого равновесие в реакции диссоциации воды смещается вправо.



Химическое уравнение гидролиза Выражение константы гидролиза
Гидролиз по аниону (анион слабой кислоты):
СН 3 СООNa ↔ Na + + СН 3 СОО - СН 3 СОО - + НОН ↔ СН 3 СООН + ОН - СН 3 СООNa + Н 2 О ↔ СН 3 СООН + NaОН К г = = = = ; рН > 7, среда щелочная.
Гидролиз по катиону (катион слабого основания):
NH 4 Cl ↔ NH 4 + + Cl - NH 4 + + HOH ↔ NH 4 OH + H + NH 4 Cl + H 2 O ↔ NH 4 OH + HCl К г = = = ; рН < 7, среда кислая.
Гидролиз по катиону и аниону (катион слабого основания и анион слабой кислоты):
СН 3 СООNH 4 ↔ СН 3 СОО - + NH 4 + CH 3 COO - + NH 4 + + НОН ↔ СН 3 СООН + NH 4 + ОН Реакция среды растворов таких солей определяется соотношением силы образующихся слабых электролитов. Она может приближаться к нейтральной, если константы диссоциации слабого основания и слабой кислоты близки между собой. К г = = К(NH 4 OH) = 1,76·10 -5 ; К(СН 3 СООН) = 1,74·10 -5 . рН ≈ 7.

Значение гидролиза в природе:

ü вследствие гидролиза алюмосиликатов происходит разрушение горных пород;

ü обеспечение слабощелочной реакции среды морской воды.

Значение гидролиза в быту: стирка; мытьё посуды; умывание с мылом; процессы пищеварения.

Использование гидролиза в промышленности:

þ порча производственного оборудования;

þ производство ценных продуктов с непищевого сырья (бумага, мыло, спирт, глюкоза, белковые вещества, дрожжи);

þ очищение промышленных сточных вод и питьевой воды (гидролиз карбоната натрия, фосфата натрия используют для очищения воды и уменьшения её жёсткости);

þ подготовка ткани к покраске;

þ внесение извести в почву.

Использование гидролиза в аналитической химии:

a как характерные реакции открытия катионов Fe 3+ , Sb 3+ , Br 3+ и анионов СН 3 СОО - , SіО 3 2- ,

a для разделения Cr 3+ и Al 3+ - ионов;

a для регулирования рН і рОН растворов (добавление NH 4 + , СН 3 СОО -).

В практике качественного анализа чаще всего имеют дело с гидролизом солей и солеподобных соединений.

Способы усиления гидролиза:

ü разбавление растворов;

ü повышение температуры;

ü удаление продуктов гидролиза;

ü добавление к раствору: катионов – сильных комплексообразователей и анионов – сильных доноров пар электронов.

Для усиления гидролиза соли, образованной катионом слабого основания и анионом сильной кислоты, необходимо добавить основание для связывания получающихся в процессе гидролиза ионов водорода: NH 4 + + HOH ↔ NH 4 OH + H +

При добавлении основания произойдёт нейтрализация кислоты и динамическое равновесие сдвинется вправо, т.е. гидролиз усилится. Если же к раствору подобной соли прибавить кислоты, то гидролиз затормозится.

Чтобы усилить гидролиз соли, образованной анионом слабой кислоты и катионом сильного основания. Необходимо связать свободные ионы ОН - , получающиеся в процессе гидролиза:

СН 3 СОО - + НОН ↔ СН 3 СООН + ОН - .

Прибавление кислоты приводит к нейтрализации основания, и динамическое равновесие сдвигается вправо, т.е. гидролиз усиливается. Если в раствор подобной соли ввести основание, то гидролиз замедлится.

Связать ионы Н + и ОН - можно в сложные анионы (НСО 3 - , НРО 4 2-) или в нейтральные молекулы слабых кислот (Н 2 СО 3 , СН 3 СООН, Н 3 ВО 3) добавлением других электролитов.

Создание оптимальных условий осаждения при количественных определениях имеет еще большее значение, чем при качественном анализе, так как всякая потеря вещества здесь совершенно недопустима. Поэтому необходимо остановиться на этом - подробнее.

Прежде всего рассмотрим процесс образования осадков. Этот процесс, несомненно, сложнее, чем можно ожидать на основании уравнения реакции. Так, судя по уравнению

Ba 2+ + SO4 2- - BaSO4

можно думать, что для образования сульфата бария нужно только, чтобы встретились в растворе два иона: Ba2+ и SO2T. Но это, конечно, не так.

Осадок BaSO4 выпадает в виде кристаллов, а из двух ионов кристаллическая решетка построена быть не может. Процесс образования твердой фазы в растворе очень сложен.

Почти всегда наблюдается так называемый индукционный период, который длится от момента смешения растворов реагентов, содержащих реагирующие вещества, до появления видимого осадка. Для различных веществ индукционный период различен; например, при осаждении BaSO* он сравнительно велик, при осаждении AgCl - очень непродолжителен.

Наличие индукционного периода объясняется тем, что образование осадка проходит через ряд стадий. В начале образуются зародышевые, или первичные кристаллы. Для их образования в пространстве должно встретиться в определенном соотношении и при определенном расположении довольно большое число реагирующих ионов. В растворе ионы окружены гидратной оболочкой, при формировании осадка она должна быть разрушена.

Образовавшиеся первичные кристаллы еще не создают поверхности раздела, т. е. образование этих первых частиц твердой фазы и соединение их (агрегация) в более крупные, состоящие из десятков, сотен молекул, еще не вызывает выделения вещества в осадок. Эта стадия формирования осадка соответствует существованию коллоидных систем. Затем первичные кристаллы или их агрегаты образуют более крупные частицы и выпадают в осадок. Этот процесс может идти двумя путями, которые определяют форму осадка, т. е. образование кристаллического или аморфного осадка. В первом случае при прибавлении в раствор порций осаждающего реагента не появляются новые центры кристаллизации, новые агрегаты. Раствор некоторое время остается в пересыщенном состоянии.

При постепенном введений осадителя выделение вещества из пересыщенного раствора происходит преимущественно на поверхности ранее образовавшихся зародышевых кристаллов, которые постепенно растут, так что в конце концов получается кристаллический осадок, состоящий из сравнительно небольшого числа относительно крупных кристаллов.

Так идет осаждение обычно тогда, когда растворимость осадка не слишком мала, особенно если приняты меры к повышению ее путем нагревания или прибавления тех или иных реактивов, например кислот.

Иначе происходит процесс образования аморфных осадков. В этом случае прибавление каждой порции осадителя вызывает быстрое возникновение в жидкости огромного количества мельчайших зародышевых кристаллов, которые растут уже не вследствие отложения на их поверхности соответствующего вещества, а в результате их соединения в более крупные, агрегаты, оседающие под влиянием силы тяжести на дно сосуда. Другими словами, происходит коагуляция первоначально образующегося коллоидного раствора.

Поскольку связь между отдельными зародышевыми кристаллами в получающихся агрегатах сравнительно непрочная, эти агрегаты могут снова распадаться с образованием коллоидного раствора.

Как видно из сказанного, называть эти осадки аморфными не совсем правильно. Правильнее было бы называть их «скрытокри-сталлическими», поскольку они образуются из кристаллов, хотя и мельчайших. Действительно, наличие кристаллической решетки у аморфных осадков может быть в большинстве случаев доказано на опыте путем исследования их с помощью рентгеновских лучей, а иногда и под микроскопом.

Форма выделяющегося осадка зависит от индивидуальных свойств веществ. Например, полярные, сравнительно хорошо рас-, творимые вещества (BaSO4, AgCl, PbSO4 и т. п.) выпадают в кристаллическом состоянии.

Но та или иная форма осадка не только связана с индивидуальными свойствами вещества, но и зависит от условий осаждения. Например, при осаждении из разбавленных водных растворов BaSO4 выпадает в виде кристаллического осадка. Если, однако, осаждать его из смеси воды с 30-60% спирта, сильно понижающего растворимость сульфата бария, то образуется коллоидный раствор или аморфный осадок. С другой стороны, осаждая сульфиды в присутствии пиридина C5H5N, получают" некоторые из них в виде кристаллов. Можно считать экспериментально

доказанным, что любое вещество может быть получено как в виде кристаллического, так и в виде аморфного осадка. Однако образование одной из этих форм обычно связано с созданием таких условий, которые неприемлемы при количественных определениях. Поэтому, в зависимости от индивидуальных свойств образующихся соединений, одни из них получаются при анализе в виде кристаллических, другие - в виде аморфных осадков. Задача аналитика состоит в том, чтобы создать условия, при которых выпадающий осадок был бы возможно более чистым и удобным для дальнейшей обработки, т. е. для отделения фильтрованием и промывания.

В заключение следует сказать, что если свежеосажденный осадок оставить на некоторое время под маточным раствором, то осадок претерпевает ряд изменений, которые называются «старением» осадка.

Оптимальные условия осаждения и старения оказываются весьма различными в случае образования аморфных и кристаллических осадков.