Как изменяются частота электромагнитных волн количество. Общие свойства электромагнитных волн (ЭМВ). Методы измерения частоты общие сведения

Семестровая работа по метрологии, стандартизации и сертификации на тему: "Измерение частоты электромагнитных волн"

Фрагменты из семестровой

  • Введение
  • Методы измерения частоты
  • Общие сведения
  • Резонансный метод
  • Четвертьволновый резонансный частотомер
  • Резонансный частотомер с нагруженной линией
  • Резонансный частотомер с объемным резонатором
  • Метод сравнения

Введение

Измерение частоты в общем случае осуществляется весьма разнообразными способами, так как колебания в природе имеют различный характер. Это может быть самый обыкновенный маятник, электрическая цепь, волна, или даже вибрации какого-либо тела. Колебательных процессы очень частое явление в современном мире техники, а частота является одной из самых основных их характеристик, чаще всего не зависящая от среды, поэтому её точное измерение очень важно. Рассмотрим основные способы измерения частоты колебаний электромагнитных волн.

Основные характеристики частотомеров

Одной из важнейших задач измерительной техники является - измерение частоты или длины волны колебаний. Измерения частоты и длины волны по своей природе различны: первое основано на измерении времени, а второе - на измерении: длины. Обычно в качестве основной величины выбирают частоту, поскольку значение ее не зависит от условий распространения и, что не менее важно, существуют эталоны частоты высокой точности, с которыми можно сравнивать измеряемые частоты. Основными характеристиками приборов, используемых для измерения частоты и длины волны, являются: относительная погрешность, чувствительность, диапазон измеряемых частот и надежность работы. Под относительной погрешностью прибора понимают отношение разности измеренной и образцовой частот к значению образцовой частоты. По точности все приборы разбиваются на три группы: малой точности с относительной погрешностью более 0,1%, средней точности с погрешностью (0,01-0,1)% и высокой точности с погрешностью менее 0,01%. Чувствительность прибора характеризуется минимальной мощностью сигнала, подводимого к частотомеру, при которой возможен отсчет частоты.

методы измерения частоты

Общие сведения

Частотой колебаний называют число полных колебаний в единицу времени: f = n / t
где t-время существования п колебаний.
Для гармонических колебаний частота f = 1/T, где Т - период колебаний.

Единица частоты герц определяется как одно колебание в одну секунду. Частота и время неразрывно связаны между собой, поэтому измерение той или другой величины диктуется удобством эксперимента и требуемой погрешностью измерения. В Международной системе единиц СИ время является одной из семи основных физических величин. Частота электромагнитных колебаний связана с периодом колебания Т и длиной однородной плоской волны в свобод¬ном пространстве следующими соотношениями: ... ... , где с - скорость света, равная 299 792,5 ± 0,3 км/с.

Спектр частот электромагнитных колебаний, используемых в радиотехнике, простирается от долей герца до тысяч гигагерц. Этот спектр вначале разделяют на два диапазона - низких и высоких частот. К низким частотам относят и инфразвуковые (ниже 20 Гц), звуковые (20- 20 000 Гц) и ультразвуковые (20-200 кГц). Высокочастотный диапазон, в свою очередь, разделяют на высокие частоты (20 кГц - 30 МГц), ультравысокие (30 - 300 МГц) и сверхвысокие (выше 300 МГц). Верхняя граница сверхвысоких частот непрерывно повышается и в настоящее время достигла 80 ГГц (без учета оптического диапазона). Такое разделение объясняется разными способами получения электрических колебаний и различием их физических свойств, а также особенностями распространения на расстояние. Однако четкой границы между отдельными участками спектра провести невозможно, поэтому такое деление в большой степени условно.

Метод перезарядки конденсатора

Присоединим конденсатор, емкость которого С, к источнику напряжения U. Конденсатор зарядится, и в нем накопится количество электричества q = CU. Если конденсатор переключить на магнитоэлектрический измеритель тока, то через него пройдет количество электричества q, вызвав отклонение указателя. Если конденсатор поочередно при¬соединять к источнику напряжения для заряда и к измерителю тока для разряда с частотой переключения f раз в секунду, то количество электричества, проходящее через амперметр при разряде, будет в f раз больше: fq = fCU = I, где I -среднее значение тока разряда. Отсюда следует, что ток в такой схеме прямо пропорционален частоте переключения и при постоянном произведении CU шкалу амперметра можно градуировать в единицах частоты.

Комфорт жизни обеспечивается различными приборами и установками, излучающими волны, в высоких концентрациях влияющими на здоровье. Поэтому каждый человек должен знать, как померить электромагнитное излучение, чтобы обезопасить себя от негативного воздействия.

Определение понятия

Электромагнитное излучение определяется как изменённое состояние электромагнитного поля. Оно порождается движением электрических зарядов и способно воздействовать на человека вдали от источника, уменьшая своё воздействие с увеличением расстояния.

Излучение представляет собой волны, которые подразделяются на следующие виды:

  • радиоизлучение;
  • инфракрасное;
  • терагерцовое;
  • ультрафиолет;
  • видимый свет;
  • рентген.

Любое пространство подвергается воздействию разной частоты, длины волн и поляризации. При этом излучение может оказывать негативное воздействие на работу электроприборов живые организмы.

Первым признаком повышения нормы электромагнитного излучения в квартире или производственном помещении являются неправильная работа бытовых приборов (их поломка и сбои), помехи при воспроизведении изображения и звука на телевизоре, неправильная работа персональных компьютеров, помехи в радиосвязи.

Чем вредно электромагнитное излучение

Организм человека и домашних животных зависит от условий среды обитания. Ежедневно человек сталкивается с работой многочисленных приборов, способных влиять на электромагнитный фон. При повышенных нормах этого фона надо применять защитные меры.

На человека в помещении могут отрицательно влиять электропроводка и электроприборы, находящиеся рядом линии электропередач, трансформаторные подстанции, передающие теле-, радиостанции. Большее воздействие может оказывать то ЭМИ, которое имеет высокие показатели при условии расположения на близком расстоянии.

Воздействие источников, генерирующих излучение, оказывает губительное действие на:

  • сердце и сосуды;
  • иммунную систему;
  • женское и мужское половое здоровье;
  • нервную и эндокринную систему.

Повышенный электромагнитный фон становится причиной утомляемости организма, вызывает заболевания крови и злокачественные опухоли. Поэтому каждый человек должен знать, как измерить электромагнитное излучение.

Пример электромагнитного фона

Наглядно представить уровень электромагнитного излучения можно на следующем примере. Для этого подойдёт внутреннее пространство офиса, в котором имеются такие приборы: персональный компьютер с WI-FI, сотовый телефон, WI-FI роутер, устройство Yota WiMax, СВЧ-печь, бытовой вентилятор.

Каждый из приборов генерирует электромагнитное излучение. При изменении состояния устройства оно также изменяется. Максимальные цифры измеритель АТТ-2592 покажет у работающего прибора и находящегося радом с измерителем. Соответственно минимальные будут у выключенного устройства, находящегося на отдалённом расстоянии и излучающего радиацию в сторону от измерителя.

Например, наибольшее напряжение электрического излучения, расположенного рядом с измерителем сотового телефона с датчиком, направленным на антенну, будет 24,52 В/м, с ненаправленным – 11,44 В/м. Если передающее устройство удалено на 0,3 м от датчика, и антенна повёрнута в сторону, наивысшее значение напряжения будет 10,65 В/м. Пример наглядно показывает, как можно снизить электромагнитный фон.

Инструкция по измерению излучения вручную

Для того чтобы измерить электромагнитное излучение в квартире, сначала надо приготовить необходимые инструменты и приборы. Для работы понадобится отвёртка с индикатором, простой радиоприёмник, ручной анализатор для измерения излучения.

Процесс измерения излучения с помощью приёмника включает следующие этапы:

  • Выдвинуть антенну из приёмника и прикрутить к ней проволочную петлю диаметром 40 см.
  • Настроить радио на пустую частоту.
  • Медленно обойти помещение, прислушиваясь к звукам приёмника.
  • Сделать вывод: место, где слышатся отчётливые звуки, является источником радиации.

Измерение электромагнитного излучения можно наглядно провести при помощи индикаторной отвёртки со светодиодом. Её можно купить в магазине. Если поднести устройство к включенному прибору, индикатор загорится красным цветом, интенсивность которого скажет о силе излучения. Данные способы не позволят определить излучение в цифрах.

Диагностика специальным прибором

Замерить электромагнитное излучение в цифрах поможет специальный прибор – ручной анализатор. Он работает на разных частотах и позволяет улавливать уровень напряжённости электромагнитного поля. Прибор доступен работникам служб Госсанэпиднадзора, организациям по охране труда и сертификации.

Данный измеритель электромагнитного излучения настраивается на нужный режим частот. Затем выбираются единицы измерения. Это могут быть вольт/метр или микроватт/см². Прибор отслеживает выбранную частоту, результаты выводятся на компьютер.

Описание устройства

Приборов, при помощи которых измеряется электромагнитное излучение, много. Оптимальным является измеритель уровней электромагнитных излучений АТТ-2592. Устройство портативное, имеет 3-х канальный датчик, дисплей ЖК с подсветкой, объём памяти в 99 измерений, питание от батареи «Крона» (9 В), габариты 60/60/237, весит 200 гр.

Измерения выполняются изотропным методом в диапазоне частот от 50 МГц до 3,5 ГГц, частота дискретизации – 2 раза в секунду, отключается автоматически через 15 минут. Прибор позволяет замерять напряжение в следующих единицах: мВ/м, В/м, мкА/м, мА/м, мкВт/м², мВт/м², мкВт/см².

Процедура измерения ЭМИ

В любом помещении есть опасность превышения электромагнитного фона. Если это производство, то там ведётся строгий контроль за показателями. В жилых помещениях сам владелец должен позаботиться о том, как измерить электромагнитное излучение и минимизировать его вредное влияние.

Дать точную картину ЭМИ в частном доме могут только специалисты. Они действуют в рамках закона по следующей схеме. При поступлении в службу СЭС соответствующего заявления работники выезжают на объект со специальным оборудованием для оценки состояния электромагнитного фона в помещении.

Приборы позволяют получить точные данные, которые потом обрабатываются. В случае нормального фона никаких мер не принимается. Если показатели завышены, то разрабатывается комплекс мер, способных привести к снижению фона. Прежде всего, выясняется причина данной ситуации. Это могут быть ошибки в проектировании и строительстве, нарушение правил эксплуатации объекта.

Экспертиза электромагнитного излучения

Электромагнитное поле образуется путём взаимодействия разноимённых зарядов физических тел между собою, образуется рядом с источником генерации и делится на три вида (дальний, промежуточный, ближний).

Величина электромагнитного излучения высчитывается по двум компонентам: электрическому (вольт/метр) и магнитному (тесла). Оба они делятся на волны низкой и высокой частоты, которые имеют разное происхождение и условия появления. На живые существа вредное влияние оказывает второй компонент.

Электрическое поле выше нормы характерно для мест, где установлены факсы, телевизоры, принтеры, плиты, копиры, излучающие электромагнитные волны, которые двигаются в пространстве. Уровень магнитного поля бывает повышен вблизи электропроводов, трансформаторов, антенн, так как оно возникает из-за движения тока по проводам.

В рамках работы санитарно-эпидемиологической службы РФ принят Федеральный закон, на основании которого представителями службы специальной аппаратурой проводится экспертиза помещений. Объектом обследования становятся бытовые электроприборы, системы радиосвязи, трансформаторные подстанции, радиолокационные установки, линии электропередач.

Санитарные нормы

Законом закреплены нормы электромагнитного излучения. Предельно допустимая норма излучаемой магнитной составляющей от 0,2 до 10 мкТл. Повышенный уровень магнитного поля фиксируется при достижении частотой излучения цифры 50 Гц. Не допускать превышения нормы магнитного излучения поможет правильно смонтированная система электроснабжения.

Нормы для электрического поля содержат следующие показатели, закреплённые в законе:

  • жилое помещение (до 0,5 кВ/м);
  • зона жилой застройки (до 1 кВ/м);
  • вне зоны жилой застройки (до 5 кВ/м);
  • в местах пересечения высоковольтных линий электропередач с автомагистралями I-IV класса (до 10 кВ/м);
  • в незаселённой местности (до 20 кВ/м).

При нарушении должностными лицами данных норм предусмотрена административная ответственность. Важными эти показатели являются для дачников, так как участки часто располагаются в зоне прохождения высоковольтных линий электропередач.

Очень важно помнить, что человек часто бессознательно подвергается воздействию ЭМИ, так как просто не имеет возможности самостоятельно замерить уровень излучаемых волн. Кроме того, нормы носят условный характер, так как ещё необходимо принимать во внимание индивидуальные особенности организма.

Способы защиты от воздействия

В случае, когда установлено превышение нормы воздействия электрического тока на человека, надо сократить до минимума пребывание в опасной зоне. Увеличение возможного расстояния от вредного источника во многих случаях позволяет добиться снижения нежелательного воздействия на организм.

Ещё один способ защиты – это установка специальных конструкций, которые будут препятствовать распространению опасных волн. Не надо пренебрегать и личными защитными средствами (обувь, одежда, очки, маски и т.д.). Эти предметы используются специалистами во время работы и способны снизить вредные показатели.

Существуют так называемые организационные средства защиты. Их время от времени применяют в отношении всего коллектива (работающих, проживающих в местах возможного повышенного фона). К таким средствам относятся плановые медицинские осмотры, отпуска, что позволяет уберечь здоровье человека.

Электроэнергия является значительным изобретением человечества. Без неё сегодня невозможно представить нашу жизнь. Но в то же время ЭМИ, образующееся при использовании электроэнергии для нужд человека, может оказывать негативное влияние на жизнь и здоровье.

Врач-пульмонолог, Терапевт, Кардиолог, Врач функциональной диагностики. Врач высшей категории. Опыт работы: 9 лет. Закончила Хабаровский государственный мединститут, клиническая ординатура по специальности «терапия». Занимаюсь диагностикой, лечением и профилактикой заболеваний внутренних органов, также провожу профосмотры. Лечу заболевания органов дыхания, желудочно-кишечного тракта, сердечно-сосудистой системы.

ЧТО ТАКОЕ РАДИОВОЛНЫ

Радиоволны – это электромагнитные колебания, распространяющиеся в пространстве со скоростью света (300 000 км/сек). Кстати, свет это тоже электромагнитные волны, обладающие схожими с радиоволнами свойствами (отражение, преломление, затухание и т.п.).

Радиоволны переносят через пространство энергию, излучаемую генератором электромагнитных колебаний. А рождаются они при изменении электрического поля, например, когда через проводник проходит переменный электрический ток или когда через пространство проскакивают искры, т.е. ряд быстро следующих друг за другом импульсов тока.

Электромагнитное излучение характеризуется частотой, длиной волны и мощностью переносимой энергии. Частота электромагнитных волн показывает, сколько раз в секунду изменяется в излучателе направление электрического тока и, следовательно, сколько раз в секунду изменяется в каждой точке пространства величина электрического и магнитного полей. Измеряется частота в герцах (Гц) – единицах названных именем великого немецкого ученого Генриха Рудольфа Герца. 1 Гц – это одно колебание в секунду, 1 мегагерц (МГц) – миллион колебаний в секунду. Зная, что скорость движения электромагнитных волн равна скорости света, можно определить расстояние между точками пространства, где электрическое (или магнитное) поле находится в одинаковой фазе. Это расстояние называется длиной волны. Длина волны в метрах рассчитывается по формуле:

Или примерно ,
где f – частота электромагнитного излучения в МГц.

Из формулы видно, что, например, частоте 1 МГц соответствует длина волны ок. 300 м. С увеличением частоты длина волны уменьшается, с уменьшением – догадайтесь сами. В дальнейшем мы убедимся, что длина волны напрямую влияет на длину антенны для радиосвязи.

Электромагнитные волны свободно проходят через воздух или космическое пространство (вакуум). Но если на пути волн встречается металлический провод, антенна или любое другое проводящее тело, то они отдают ему свою энергию, вызывая тем самым в этом проводнике переменный электрический ток. Но не вся энергия волны поглощается проводником, часть ее отражается от его поверхности и либо уходит обратно, либо рассеивается в пространстве. Кстати, на этом основано применение электромагнитных волн в радиолокации.

Еще одним полезным свойством электромагнитных волн является их способность огибать на своем пути некоторые препятствия. Но это возможно лишь в том случае, когда размеры объекта меньше, чем длина волны, или сравнимы с ней. Например, чтобы обнаружить самолет, длина радиоволны локатора должна быть меньше его геометрических размеров (менее 10 м). Если же тело больше, чем длина волны, оно может отразить ее. Но может и не отразить. Вспомните военную технологию снижения заметности «Stealth», в рамках которой разработаны соответствующие геометрические формы, радиопоглощающие материалы и покрытия для уменьшения заметности объектов для локаторов.

Энергия, которую несут электромагнитные волны, зависит от мощности генератора (излучателя) и расстояния до него. По научному это звучит так: поток энергии, приходящийся на единицу площади, прямо пропорционален мощности излучения и обратно пропорционален квадрату расстояния до излучателя. Это значит, что дальность связи зависит от мощности передатчика, но в гораздо большей степени от расстояния до него.

РАСПРЕДЕЛЕНИЕ СПЕКТРА

Радиоволны, используемые в радиотехнике, занимают область, или более научно – спектр от 10 000 м (30 кГц) до 0.1 мм (3 000 ГГц). Это только часть обширного спектра электромагнитных волн. За радиоволнами (по убывающей длине) следуют тепловые или инфракрасные лучи. После них идет узкий участок волн видимого света, далее – спектр ультрафиолетовых, рентгеновских и гамма лучей – все это электромагнитные колебания одной природы, отличающиеся только длиной волны и, следовательно, частотой.

Хотя весь спектр разбит на области, границы между ними намечены условно. Области следуют непрерывно одна за другой, переходят одна в другую, а в некоторых случаях перекрываются.

Международными соглашениями весь спектр радиоволн, применяемых в радиосвязи, разбит на диапазоны:

Диапазон
частот

Наименование диапазона частот

Наименование
диапазона волн

Длина волны

Очень низкие частоты (ОНЧ)

Мириаметровые

Низкие частоты (НЧ)

Километровые

300–3000 кГц

Средние частоты (СЧ)

Гектометровые

Высокие частоты (ВЧ)

Декаметровые

Очень высокие частоты (ОВЧ)

Метровые

300–3000 МГц

Ультравысокие частоты (УВЧ)

Дециметровые

Сверхвысокие частоты (СВЧ)

Сантиметровые

Крайневысокие частоты (КВЧ)

Миллиметровые

300–3000 ГГц

Гипервысокие частоты (ГВЧ)

Децимиллиметровые

Но эти диапазоны весьма обширны и, в свою очередь, разбиты на участки, куда входят так называемые радиовещательные и телевизионные диапазоны, диапазоны для наземной и авиационной, космической и морской связи, для передачи данных и медицины, для радиолокации и радионавигации и т.д. Каждой радиослужбе выделен свой участок диапазона или фиксированные частоты.


Распределение спектра между различными службами.

Эта разбивка довольно запутана, поэтому многие службы используют свою «внутреннюю» терминологию. Обычно при обозначении диапазонов выделенных для наземной подвижной связи используются следующие названия:

Диапазон частот

Пояснения

Из-за особенностей распространения в основном применяется для дальней связи.

25.6–30.1 МГц

Гражданский диапазон, в котором могут пользоваться связью частные лица. В разных странах на этом участке выделено от 40 до 80 фиксированных частот (каналов).

Диапазон подвижной наземной связи. Непонятно почему, но в русском языке не нашлось термина, определяющего данный диапазон.

136–174 МГц

Наиболее распространенный диапазон подвижной наземной связи.

400–512 МГц

Диапазон подвижной наземной связи. Иногда не выделяют этот участок в отдельный диапазон, а говорят УКВ, подразумевая полосу частот от 136 до 512 МГц.

806–825 и
851–870 МГц

Традиционный «американский» диапазон; широко используется подвижной связью в США. У нас не получил особого распространения.

Не надо путать официальные наименования диапазонов частот с названиями участков, выделенных для различных служб. Стоит отметить, что основные мировые производители оборудования для подвижной наземной связи выпускают модели, рассчитанные на работу в пределах именно этих участков.

В дальнейшем мы будем говорить о свойствах радиоволн применительно к их использованию в наземной подвижной радиосвязи.

КАК РАСПРОСТРАНЯЮТСЯ РАДИОВОЛНЫ

Радиоволны излучаются через антенну в пространство и распространяются в виде энергии электромагнитного поля. И хотя природа радиоволн одинакова, их способность к распространению сильно зависит от длины волны.

Земля для радиоволн представляет проводник электричества (хотя и не очень хороший). Проходя над поверхностью земли, радиоволны постепенно ослабевают. Это связано с тем, что электромагнитные волны возбуждают в поверхности земли электротоки, на что и тратится часть энергии. Т.е. энергия поглощается землей, причем тем больше, чем короче длина волна (выше частота).

Кроме того, энергия волны ослабевает еще и потому, что излучение распространяется во все стороны пространства и, следовательно, чем дальше от передатчика находится приемник, тем меньшее количество энергии приходится на единицу площади и тем меньше ее попадает в антенну.

Передачи длинноволновых вещательных станций можно принимать на расстоянии до нескольких тысяч километров, причем уровень сигнала уменьшается плавно, без скачков. Средневолновые станции слышны в пределах тысячи километров. Что же касается коротких волн, то их энергия резко убывает по мере удаления от передатчика. Этим объясняется тот факт, что на заре развития радио для связи в основном применялись волны от 1 до 30 км. Волны короче 100 метров вообще считались непригодными для дальней связи.

Однако дальнейшие исследования коротких и ультракоротких волн показали, что они быстро затухают, когда идут у поверхности Земли. При направлении излучения вверх, короткие волны возвращаются обратно.

Еще в 1902 английский математик Оливер Хевисайд (Oliver Heaviside) и американский инженер-электрик Артур Эдвин Кеннелли (Arthur Edwin Kennelly) практически одновременно предсказали, что над Землей существует ионизированный слой воздуха – естественное зеркало, отражающее электромагнитные волны. Этот слой был назван ионосферой.

Ионосфера Земли должна была позволить увеличить дальность распространения радиоволн на расстояния, превышающие прямую видимость. Экспериментально это предположение было доказано в 1923. Радиочастотные импульсы передавались вертикально вверх и принимались вернувшиеся сигналы. Измерения времени между посылкой и приемом импульсов позволили определить высоту и количество слоев отражения.


Распространение длинных и коротких волн.

Отразившись от ионосферы, короткие волны возвращаются к Земле, оставив под собой сотни километров «мертвой зоны». Пропутешествовав к ионосфере и обратно, волна не «успокаивается», а отражается от поверхности Земли и вновь устремляется к ионосфере, где опять отражается и т. д. Так, многократно отражаясь, радиоволна может несколько раз обогнуть земной шар.

Установлено, что высота отражения зависит в первую очередь от длины волны. Чем короче волна, тем на большей высоте происходит ее отражение и, следовательно, больше «мертвая зона». Эта зависимость верна лишь для коротковолновой части спектра (примерно до 25–30 МГц). Для более коротких волн ионосфера прозрачна. Волны пронизывают ее насквозь и уходят в космическое пространство.

Из рисунка видно, что отражение зависит не только от частоты, но и от времени суток. Это связано с тем, что ионосфера ионизируется солнечным излучением и с наступлением темноты постепенно теряет свою отражательную способность. Степень ионизации также зависит от солнечной активности, которая меняется в течение года и из года в год по семилетнему циклу.


Отражательные слои ионосферы и распространение коротких волн в зависимости от частоты и времени суток.

Радиоволны УКВ диапазона по свойствам в большей степени напоминают световые лучи. Они практически не отражаются от ионосферы, очень незначительно огибают земную поверхность и распространяются в пределах прямой видимости. Поэтому дальность действия ультракоротких волн невелика. Но в этом есть определенное преимущество для радиосвязи. Поскольку в диапазоне УКВ волны распространяются в пределах прямой видимости, то можно располагать радиостанции на расстоянии 150–200 км друг от друга без взаимного влияния. А это позволяет многократно использовать одну и ту же частоту соседним станциям.


Распространение коротких и ультракоротких волн.

Свойства радиоволн диапазонов ДЦВ и 800 МГц еще более близки к световым лучам и потому обладают еще одним интересным и важным свойством. Вспомним, как устроен фонарик. Свет от лампочки, расположенной в фокусе рефлектора, собирается в узкий пучок лучей, который можно послать в любом направлении. Примерно то же самое можно проделать и с высокочастотными радиоволнами. Можно их собирать зеркалами-антеннами и посылать узкими пучками. Для низкочастотных волн такую антенну построить невозможно, так как слишком велики были бы ее размеры (диаметр зеркала должен быть намного больше, чем длина волны).

Возможность направленного излучения волн позволяет повысить эффективность системы связи. Связано это с тем, что узкий луч обеспечивает меньшее рассеивание энергии в побочных направлениях, что позволяет применять менее мощные передатчики для достижения заданной дальности связи. Направленное излучение создает меньше помех другим системам связи, находящимся не в створе луча.

При приеме радиоволн также могут использоваться достоинства направленного излучения. Например, многие знакомы с параболическими спутниковыми антеннами, фокусирующими излучение спутникового передатчика в точку, где установлен приемный датчик. Применение направленных приемных антенн в радиоастрономии позволило сделать множество фундаментальных научных открытий. Возможность фокусирования высокочастотных радиоволн обеспечила их широкое применение в радиолокации, радиорелейной связи, спутниковом вещании, беспроводной передаче данных и т.п.


Параболическая направленная спутниковая антенна (фото с сайта ru.wikipedia.org).

Необходимо отметить, что с уменьшением длины волны возрастает затухание и поглощение энергии в атмосфере. В частности на распространение волн короче 1 см начинают влиять такие явления как туман, дождь, облака, которые могут стать серьезной помехой, ограничивающей дальность связи.

Мы выяснили, что радиоволны обладают различными свойствами распространения в зависимости от длины волны и каждый участок радиоспектра применяется там, где лучше всего используются его преимущества.

Глава 1

ОСНОВНЫЕ ПАРАМЕТРЫ ЭЛЕКТРОМАГНИТНЫХ ВОЛН

Что собой представляет электромагнитная волна, легко представить на следующем примере. Если на водную гладь бросить камушек, то на поверхности образуются расходящиеся кругами волны. Они движутся от источника их возникновения (возмущения) с определенной скоростью распространения. Для электромагнитных волн возмущениями являются передвигающиеся в пространстве электрические и магнитные поля. Меняющееся во времени электромагнитное поле обязательно вызывает появление переменного магнитного поля, и наоборот. Эти поля взаимно связаны.

Основным источником спектра электромагнитных волн является звезда Солнце. Часть спектра электромагнитных волн видит глаз человека. Этот спектр лежит в пределах 380...780 нм (рис. 1.1). В области видимого спектра глаз ощушает свет по-разному. Электромагнитные колебания с различной длиной волн вызывают ощущение света с различной окраской.

Часть спектра электромагнитных волн используется для целей радиотелевизионного вешания и связи. Источник электромагнитных волн - провод (антенна), в котором происходит колебание электрических зарядов. Процесс формирования полей, начавшийся вблизи провода, постепенно, точку за точкой, захватывает все пространство. Чем выше частота переменного тока, проходящего по проводу и порождающего электрическое или магнитное поле, тем интенсивнее создаваемые проводом радиоволны заданной длины.

Электромагнитные волны имеют следующие основные характеристики.

1. Длина волны lв, - кратчайшее расстояние между двумя точками в пространстве, на котором фаза гармонической электромагнитной волны меняется на 360°. Фаза - это состояние (стадия) периодического процесса (рис. 1.2).


В наземном телевизионном вешании используются метровые (MB) и дециметровые волны (ДМВ), в спутниковом - сантиметровые волны (СМ). По мере заполнения частотного диапазона СМ будет осваиваться диапазон миллиметровых волн (Ка-bаnd).

2. Период колебания волны Т- время, в течение которого происходит одно полное изменение напряженности поля, т. е. время, за которое точка радиоволны, имеющая какую-то фиксированную фазу, проходит путь, равный длине волны lв.

3. Частота колебаний электромагнитного поля F (число колебаний поля в секунду) определяется по формуле

Единицей измерения частоты является герц (Гц) - частота, при которой совершается одно колебание в секунд. В спутниковом вещании приходится иметь дело с очень высокими частотами электромагнитных колебаний измеряемых в гигагерцах.

Для спутникового непосредственного телевизионного вещания (СНТВ) по линии Космос - Земля используются диапазон C-band low и часть диапазона Кu (10,7...12,75 ГГи). Верхняя часть этих диапазонов применяется для передачи информации по линии Земля - Космос (табл. 1.1).


4. Скорость распространения волны С- скорость последовательного распространения волны от источника энергии (антенны).

Скорость распространения радиоволн в свободном пространстве (вакууме) постоянна и равна скорости света С= 300 000 км/с. Несмотря на такую высокую скорость, электромагнитная волна по линии Земля - Космос - Земля проносится за время 0,24 с. На земле радиотелевизионные передачи можно практически мгновенно принимать в любой точке. При распространении в реальном пространстве, например -в воздухе, скорость движения радиоволны зависит от свойств среды, она обычно меньше С на величину коэффициента преломления среды.

Частота электромагнитных волн F, скорость их распространения С и длина волны л связаны соотношением

lв=C/F, а так как F=1/T , то lв=С*T.

Подставляя значение скорости С= 300 000 км/с в последнюю формулу, получаем

lв(м)=3*10^8/F(м/c*1/Гц)

Для больших значений частот длину волны электромагнитного колебания можно определить по формуле lв(м)=300/F(МГц) Зная длину волны электромагнитного колебания, частоту определяют по формуле F(МГц)=300/lв(м)

5. Поляризация радиоволн. Электрическая и магнитная составляющие электромагнитного поля соответственно характеризуются векторами Е и Н, которые показывают значение напряженностей полей и их направление. Поляризацией называется ориентировка вектора электрического поля Е волны относительно поверхности земли (рис. 1.2).

Вид поляризации радиоволн определяется ориентировкой (положением) передающей антенны относительно поверхности земли. Как в наземном, так и в спутниковом телевидении применяется линейная поляризация, т. е. горизонтальная Н и вертикальная V (рис. 1.3).

Радиоволны с горизонтальным вектором электрического поля называют горизонтально поляризованными, а с вертикальным - вертикально поляризованными. Плоскость поляризации у последних волн вертикальна, а вектор Н (см. рис. 1.2) находится в горизонтальной плоскости.

Если передающая антенна установлена горизонтально над поверхностью земли, то электрические силовые линии поля также будут расположены горизонтально. В этом случае поле наведет наибольшую электродвижущую силу (ЭДС) в гори-



Рис 1.4. Круговая поляризация радиоволн:

LZ- левая; RZ- правая

зонтально расположенной приемной антенне. Следовательно, при Н поляризации радиоволн приемную антенну необходимо ориентировать горизонтально. При этом приема радиоволн на вертикально расположенную антенну теоретически не будет, так как наведенная в антенне ЭДС равна нулю. И наоборот, при вертикальном положении передающей антенны приемную антенну также необходимо расположить вертикально, что позволит получить в ней наибольшую ЭДС.

При телевизионном вещании с искусственных спутников Земли (ИСЗ) кроме линейных поляризаций широко используется круговая поляризация. Связано это, как ни странно, с теснотой в эфире, так как на орбитах находится большое количество спутников связи и ИСЗ непосредственного (прямого) телевизионного вещания.

Часто в таблицах параметров спутников дают сокращенное обозначение вида круговой поляризации - L и R. Круговую поляризацию радиоволн создает, например, коническая спираль на облучателе передающей антенны. В зависимости от направления намотки спирали круговая поляризация оказывается левой или правой (рис. 1.4).

Соответственно в облучателе наземной антенны спутникового телевидения должен быть установлен поляризатор, который реагирует на круговую поляризацию радиоволн, излучаемых передающей антенной ИСЗ.

Рассмотрим вопросы модуляции высокочастотных колебаний и их спектр при передаче с ИСЗ. Целесообразно это сделать в сравнении с наземными вещательными системами.

Разнос между несущими частотами сигналов изображения и звукового сопровождения составляет 6,5 МГц, остаток нижней боковой полосы (слева от несущей изображения) - 1,25 МГц, а ширина канала звукового сопровождения - 0,5 МГц

(рис. 1.5). С учетом этого суммарная ширина телевизионного канала принята равной 8,0 МГц (по стандартам D и К, принятым в странах СНГ).

Передающая телевизионная станция имеет в своем составе два передатчика. Один из них передает электрические сигналы изображения, а другой - звуковое сопровождение соответственно на разных несущих частотах. Изменение какого-то параметра несущего высокочастотного колебания (мощности, частоты, фазы и др.) под воздействием колебаний низкой частоты называется модуляцией. Используются два основных вида модуляции: амплитудная (AM) и частотная (ЧМ). В телевидении сигналы изображения передаются с AM, а звуковое сопровождение - с ЧМ. После модуляции электрические колебания усиливаются по мощности, затем поступают в передающую антенну и излучаются ею в пространство (эфир) в виде радиоволн.

8 наземном телевизионном вещании по ряду причин невозможно применить ЧМ для передачи сигналов изображения. На СМ места в эфире значительно больше и такая возможность существует. В результате спутниковый канал (транспондер) занимает полосу частот в 27 МГц.

Преимущества частотной модуляции сигнала поднесущей:

меньшая по сравнению с AM чувствительность к помехам и шумам, низкая чувствительность к нелинейности динамических характеристик каналов передачи сигналов, а также стабильность передачи на далекие расстояния. Данные характеристики объясняются постоянством уровня сигнала в каналах передачи, возможностью проведения частотной коррекции предыскажений, благоприятно влияющих на отношение сигнал/шум, благодаря чему ЧМ можно значительно снизить мощность передатчика при передаче информации на одно и то же расстояние. Например, в наземных вещательных системах для передачи сигналов изображения на одной и той же телевизионной станции используются передатчики в 5 раз большей мощности, чем для передачи сигналов звукового сопровождения.

), описывающей электромагнитное поле, теоретически показал, что электромагнитное поле в вакууме может существовать и в отсутствие источников - зарядов и токов. Поле без источников имеет вид волн, распространяющихся с конечной скоростью, которая в вакууме равна скорости света: с = 299792458±1, 2 м/с. Совпадение скорости распространения электромагнитных волн в вакууме с измеренной ранее скоростью света позволило Максвеллу сделать вывод о том, что свет представляет собой электромагнитные волны. Подобное заключение в дальнейшем легло в основу электромагнитной теории света.

В 1888 году теория электромагнитных волн получила экспериментальное подтверждение в опытах Г. Герца . Используя источник высокого напряжения и вибраторы (см. Герца вибратор), Герцу удалось выполнить тонкие эксперименты по определению скорости распространения электромагнитной волны и ее длины. Экспериментально подтвердилось, что скорость распространения электромагнитной волны равна скорости света, что доказывало электромагнитную природу света.