Численные методы решения уравнений в частных производных гиперболического типа (на примере уравнения переноса). Примеры разностных схем. Явные и неявные разностные схемы Постановка задачи. Алгоритм метода

Раздел ¹ 10. Численное решение уравнений в частных производных

Разностные схемы для уравнений эллиптического типа

Различные краевые задачи и аппроксимация граничных условий

Построение разностной схемы в случае задачи Дирихле для уравнения Пуассона

Метод матричной прогонки

Итерационный метод решения разностной схемы для задачи Дирихле

Уравнение параболического типа. Явные и неявные конечноразностные методы

Методы прогонки для уравнения параболического типа

Предметный указатель

Разностные схемы. Основные понятия

Пусть Д - некоторая область изменения независимых переменных x, y, ограниченная контуром. Говорят, что в области Д задано линейное дифференциальное уравнение второго порядка для функции U(x, y), если для любой точки из области Д имеет место соотношение

∂2 U

∂2 U

∂2 U

∂x2

∂x2

G(x, y)U = f(x, y),

где a(x, y), b(x, y), . . . - коэффициенты, f(x, y) - свободный член уравнения. Эти функции известны и их обычно считают определенными в замкнутой области Д = Д + .

График решения представляет собой поверхность в пространстве Oxyz.

Назад Первая Предыдущая Следующая Последняя Перейти Предметный указатель

Обозначим δ(x, y) = b2 − ac. Уравнение L(U) = f называется эллиптическим, параболическим или

гиперболическим в Д, если соответственно выполняются условия δ(x, y) < 0, δ(x, y) = 0, δ(x, y) > 0 для

всех (x, y) Д.

В зависимости от типа дифференциального уравнения по-разному ставятся граничные начальные

(10.1):

Уравнение Пуассона (уравнение эллиптического типа)

∂2 U ∂2 U

∂x 2 + ∂y 2 = f(x, y)

Назад Первая Предыдущая Следующая Последняя Перейти Предметный указатель

Уравнение теплопроводности (уравнение параболическго типа)

∂U = ∂ 2 U + f(x, t) ∂t ∂x2

Волновое уравнение (уравнение гиперболического типа)

∂2 U ∂2 U

∂x 2 + ∂y 2 = f(x, y)

Сходимость, аппроксимация и устойчивость разностных схем

Пусть U есть решение дифференциального уравнения

заданного в Д. Рассмотрим некоторое множество Дh = {Mh } состоящее из изолированных точек Mh , принадлежащих замкнутой области Д = Д + . Число точек в Дh , будем характеризовать величиной h; чем меньше h, тем большим будет число точек в Дh . Множество Дh называется сеткой, а точки Mh Дh - узлами сетки. Функция, определенная в узлах, называется сеточной функцией. Обозначим через U пространство непрерывных в D функций V (x, y). Через Uh обозначим пространство, образованное совокупностью сеточных функций Vh (x, y), определенных на Дh . В методе сеток осуществляется замена пространства U на пространство Uh .

Пусть U(x, y) - точное решение уравнения ((10.2 )) и U(x, y) принадлежит U. Поставим задачу отыскания значений Uh (x, y). Эти значения в совокупности образуют таблицу, в которой число значений

Назад Первая Предыдущая Следующая Последняя Перейти Предметный указатель

равно числу точек в Дh . Точно поставленную задачу удается решить редко. Как правило, можно вычислить некоторые сеточные значения U(h) , относительно которых можно предполагать, что

U(h) ≈ Uh (x, y).

Величины U(h) называются приближенными сеточными значениями решения U(x, y). Для их вычисления строят систему численных уравнений, которую мы будем записывать в виде

Lh (U(h) ) = fh ,

есть разностный оператор,

соответствующий оператору

зуется по F аналогично тому, как U

образовывалось по U. Формулу (10.3 ) будем называть разностной

схемой. Пусть в линейных пространствах Uh и Fh введены соответственно нормы k · kU h и k · kF h , которые являются сеточными аналогами норм k · kU и k · kF в исходных пространствах. Будем говорить, что разностная схема (10.3 ) является сходящейся, если при h → 0 выполняется условие

kUh (x, y) − Uh kU h → 0.

Если выполняется условие

kUh (x, y) − Uh kU h 6 chs ,

где c - постоянная, не зависящая от h и s > 0, то говорят, что имеет место сходимость со скоростью порядка s относительно h.

Говорят, что разностная схема (10.3 ) аппроксимирует задачу (10.2 ) на решении U(x, y), если

Lh (Uh (x, y)) = f(h) + δf(h) и

δf(h) F h → 0 приh → 0.

Назад Первая Предыдущая Следующая Последняя Перейти Предметный указатель

Величина δf(h) называется погрешностью аппроксимации или невязкой разностной схемы. Если

δf (h) F h 6 Mh σ, где M - константа, не зависящая от h и σ > 0, то говорят, что задана разностная схема (10.3 ) на решении U(x, y) с погрешностью порядка σ относительно h.

Разностная схема (3) называется устойчивой, если существует такое h0 > 0, что для всех h < h0 и любых f(h) Fh выполняются условия

Разностная схема (10.3 ) имеет единственное решение;

U (h) U h

f(h) F h , где M - постоянная, не зависящая от h и f(h) .

Иначе говоря, разностная схема является устойчивой, если ее решение непрерывно зависит от входных данных. Устойчивость характеризует чувствительность схемы к различного рода погрешностям, она является внутренним свойством разностной задачи и это свойство не связывается непосредственно с исходной дифференциальной задачей, в отличие от сходимости и аппроксимации. Между понятиями сходимости, аппроксимации и устойчивости существует связь. Она состоит в том, что из аппроксимации и устойчивости следует сходимость.

Теорема 1 Пусть разностная схема L h (U h (x, y)) = f (h) аппроксимирует задачу L(U) = f на решении U(x, y) с порядком s относительно h и устойчива. Тогда эта схема будет сходиться, и порядок ее сходимости будет совпадать с порядком аппроксимации, т.е. будет справедлива оценка

Uh (x, y) − Uh U h 6 khs ,

где k - постоянная, не зависящая от h .

Доказательство . По определению аппроксимации имеем

(h) F h 6 M(Chs ) = Khs ,

где K = MC. Таким образом, оценка (10.4 ) установлена и теорема доказана. Обычно применение метода сеток заключается в следующем:

1. Вначале указывается правило выбора сетки, т.е. указывается метод замены области Д и контура Г некоторой сеточной областью. Чаще всего сетка выбирается прямоугольной и равномерной.

2. Затем указывается и строится конкретно одна или несколько разностных схем. Проверяется условие аппроксимации и устанавливается ее порядок.

3. Доказывается устойчивость построенных разностных схем. Это один из наиболее важных и сложных вопросов. Если разностная схема обладает аппроксимацией и устойчивостью, то о сходимости судят по доказанной теореме.

4. Рассматривается вопрос численного решения разностных схем.

В случае линейных разностных схем это будет система линейных алгебраических уравнений. Порядок таких систем может быть большим.

Назад Первая Предыдущая Следующая Последняя Перейти Предметный указатель

конфигурация узлов, значения сеточной функции в которых определяют вид разностных уравнений во внутренних (не приграничных) точках сетки. Как правило, на рисунках с изображениями шаблонов точки, участвующие в вычислении производных, соединяются линиями.

Схема Куранта - Изаксона - Риса (КИР), которую иногда также связывают с именем С.К. Годунова, получается при , . Ее порядок аппроксимации . Схема КИР условно устойчива, т.е. при выполнении условия Куранта . Приведем разностные уравнения для схемы Куранта - Изаксона - Риса во внутренних точках расчетной области:

Эти схемы, имеющие также название схемы с разностями против потока (в англоязычной литературе - upwind) могут быть записаны в виде

Их преимущество состоит в более точном учете области зависимости решения. Если ввести обозначения

то обе схемы можно записать в следующих формах:

(потоковая форма разностного уравнения);

(здесь явно выделен член со второй разностью, придающий устойчивость схеме);

(уравнение в конечных приращениях).

Рассмотрим также метод неопределенных коэффициентов для построения разностной схемы правый уголок первого порядка точности для уравнения переноса

Схему можно представить в виде

Схема Куранта - Изаксона - Риса тесно связана с численными методами характеристик . Дадим краткое описание идеи таких методов.

Две последние полученные схемы (при разных знаках скорости переноса) можно интерпретировать следующим образом. Построим характеристику , проходящую через узел (t n + 1 , x m ), значение в котором необходимо определить, и пересекающую слой t n в точке . Для определенности считаем, что скорость переноса c положительна.

Проведя линейную интерполяцию между узлами x m - 1 и x m на нижнем слое по времени, получим

Далее перенесем вдоль характеристики значение u n (x") без изменения на верхний слой t n + 1 , т.е. положим . Последнее значение естественно считать приближенным решением однородного уравнения переноса. В таком случае

или, переходя от числа Куранта снова к сеточным параметрам,

т.е. другим способом пришли к уже известной схеме "левый уголок", устойчивой при . При точка пересечения характеристики , выходящей из узла (t n + 1 , x m , с n - м слоем по времени расположена левее узла (t n , x m - 1 ). Таким образом, для отыскания решения используется уже не интерполяция , а экстраполяция, которая оказывается неустойчивой.

Неустойчивость схемы "правый уголок" при c > 0 также очевидна. Для доказательства этого можно использовать либо спектральный признак, либо условие Куранта, Фридрихса и Леви. Аналогичные рассуждения можно провести и для случая c < 0 и схемы "правый уголок".


Неустойчивая четырехточечная схема получается при , ее порядок аппроксимации . Сеточные уравнения для разностной схемы будут иметь следующий вид:

Схема Лакса - Вендроффа возникает при . Порядок аппроксимации схемы Лакса - Вендроффа есть . Схема устойчива при выполнении условия Куранта .

Эту схему можно получить либо методом неопределенных коэффициентов, либо путем более точного учета главного члена погрешности аппроксимации. Рассмотрим процесс вывода схемы Лакса - Вендроффа подробнее. Проводя исследование предыдущей четырехточечной схемы на аппроксимацию (а исследование это довольно элементарно и сводится к разложению функции проекции на сетку точного решения дифференциальной задачи в ряд Тейлора), получим для главного члена погрешности

При выводе выражения для главного члена погрешности аппроксимации использовано следствие исходного дифференциального уравнения переноса

Которое получается путем дифференцирования исходного уравнения (3.3) сначала по времени t , затем по координате x и вычитанием одно из другого получившихся соотношений.

Далее, заменяя вторую производную во втором слагаемом в правой части с точностью до O(h 2) , получим новую разностную схему, аппроксимирующую исходное дифференциальное уравнение с точностью . Сеточные уравнения для схемы Лакса - Вендроффа во внутренних узлах расчетных сеток есть

Неявная шеститочечная схема возникает при q = 0 ; при ее порядок аппроксимации , при .

Разностная схема

Разностная схема - это конечная система алгебраических уравнений, поставленная в соответствие какой-либо дифференциальной задаче, содержащей дифференциальное уравнение и дополнительные условия (например краевые условия и/или начальное распределение). Таким образом, разностные схемы применяются для сведения дифференциальной задачи, имеющей континуальный характер, к конечной системе уравнений, численное решение которых принципиально возможно на вычислительных машинах. Алгебраические уравнения, поставленные в соответствие дифференциальному уравнению получаются применением разностного метода , что отличает теорию разностных схем от других численных методов решения дифференциальных задач (например проекционных методов, таких как метод Галёркина).

Решение разностной схемы называется приближенным решением дифференциальной задачи.

Хотя формальное определение не накладывает существенных ограничений на вид алгебраических уравнений, но на практике имеет смысл рассматривать только те схемы, которые каким-либо образом отвечают дифференциальной задаче. Важными понятиями теории разностных схем являются понятия сходимости, аппроксимации, устойчивости, консервативности.

Аппроксимация

Говорят, что дифференциальный оператор , определённый на функциях , заданных в области , аппроксимируется на некотором классе функций конечно-разностным оператором , определённым на функциях , заданных на сетке, зависящей от шага , если

Говорят, что аппроксимация имеет порядок , если

где - константа, зависящая от конкретной функции , но не зависящая от шага . Норма , использованная выше, может быть различной, и понятие аппроксимации зависит от её выбора. Часто используется дискретный аналог нормы равномерной непрерывности :

иногда используются дискретные аналоги интегральных норм .

Пример . Аппроксимация оператора конечно-разностным оператором

на ограниченном интервале имеет второй порядок на классе гладких функций .

Конечно-разностная задача аппроксимирует дифференциальную задачу, и аппроксимация имеет порядок , если и само дифференциальное уравнение, и граничные (и начальные) условия аппроксимируются соответствующими конечно-разностными операторами, и аппроксимации имеют порядок .

Условие Куранта

Условие Куранта (в англоязычной литературе англ. Courant-Friedrichs-Levy condition , CFL) - скорость распространения возмущений в разностной задаче не должна быть меньше, чем в дифференциальной. Если это условие не выполнено, то результат разностной схемы может не стремиться к решению дифференциального уравнения. Другими словами, за один шаг по времени частица не должна «пробегать» более одной ячейки.

В случае схем, коэффициенты которых не зависят от решения дифференциального уравнения, условие Куранта следует из устойчивости.

Схемы на смещенных сетках

В этих схемах сетки, на которых задан результат, и данные смещены относительно друг друга. Например, точки результата находятся посередине между точками данных. В некоторых случаях это позволяет использовать более простые граничные условия.

См. также

Ссылки

  • «Разностные схемы» - Глава в wikibooks на тему «Разностные схемы для гиперболических уравнений»
  • Демьянов А. Ю., Чижиков Д. В. Неявная гибридная монотонная разностная схема второго порядка точности
  • В. С. Рябенький, А. Ф. Филиппов. Об устойчивости разностных уравнений. - М .: Гостехиздат, 1956.
  • С. К. Годунов, В. С. Рябенький. Введение в теорию разностных схем. - М .: Физматгиз, 1962.
  • К. И. Бабенко. Основы численного анализа. - М .: Наука, 1986.
  • Березин И.С., Жидков Н.П. Методы вычислений, - Любое издание.
  • Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы, - Любое издание.
  • Г. И. Марчук. Методы вычислительной математики. - М .: Наука, 1977.

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Разностная схема" в других словарях:

    Система разностных уравнений, аппроксимирующих дифференциальное уравнение и дополнительные (начальные, граничные и др.) условия. Аппроксимация исходной дифференциальной задачи Р. с. это один из способов приближенной дискретизации исходной задачи … Математическая энциклопедия

    разностная схема конечных элементов - метод конечных элементов — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом Синонимы метод конечных элементов EN finite volume difference schedule …

    Разностная схема это конечная система алгебраических уравнений, поставленная в соответствие какой либо дифференциальной задаче, содержащей дифференциальное уравнение и дополнительные условия (например краевые условия и/или начальное… … Википедия

    конечно-разностная схема расчёта на основе контрольных объёмов - (напр. тепломассобмена, теплопроводности) [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN control volume based finite difference schedule … Справочник технического переводчика

    Схема: графический документ ; изложение, изображение, представление чего либо в самых общих чертах, упрощённо (например, схема доклада); электронное устройство, содержащее множество компонентов (интегральная схема). Графический документ… … Википедия

    Разностная схема, построенная на основе вариационной задачи, соответствующей краевой задаче для дифференциального уравнения. Основная идея построения Р. в. с. состоит в том, чтобы при специальном выборе координатных функций в Ритца методе… … Математическая энциклопедия

    Численные методы решения методы решения уравнений гииерболпч. типа на основе вычислительных алгоритмов. Различные математич. модели во многих случаях приводят к дифференциальным уравнениям гиперболич. типа. Такие уравнения имеют точные аиалитич.… … Математическая энциклопедия

    Раздел вычислительной математики, изучающий методы приближенного решения дифференциальных уравнений путем их замены конечноразностными уравнениями (р а з н о с т н ы м и с х е м а м и). Р. с. т. изучает способы построения разностных схем,… … Математическая энциклопедия

    Численные методы решения для уравнений с частными производными приближенные методы решения, в результате к рых решение задачи представляется таблицей чисел. Точно решения (в виде явных формул, рядов и т. п.) К. з. можно построить лишь в редких… … Математическая энциклопедия

    Методы решения задач газовой динамики на основе вычислительных алгоритмов. Рассмотрим основные аспекты теории численных методов решения задач газовой динамики, записав газовой динамики уравнения в виде законов сохранения в инерциальной… … Математическая энциклопедия электронная книга


Математика и математический анализ

Решение разностной схемы называется приближенным решением дифференциальной задачи. Характеристика неявной разностной схемы Рассмотрим одномерное дифференциальное уравнение параболического типа с начальным и граничными условиями: 4.7 записана на n 1ом шаге по времени для удобства последующего изложения метода и алгоритма решения неявной разностной схемы 4. В разделе Порядок аппроксимации разностной схемы было отмечено что разностная схема 4.

8 вопрос: Разностные схемы: явная и неявная схемы:

Разностная схема — это конечная система алгебраических уравнений, поставленная в соответствие какой-либо дифференциальной задаче, содержащей дифференциальное уравнение и дополнительные условия (например краевые условия и/или начальное распределение ). Таким образом, разностные схемы применяются для сведения дифференциальной задачи, имеющей континуальный характер, к конечной системе уравнений, численное решение которых принципиально возможно на вычислительных машинах. Алгебраические уравнения, поставленные в соответствие дифференциальному уравнению получаются применением разностного метода , что отличает теорию разностных схем от других численных методов решения дифференциальных задач (например проекционных методов, таких как метод Галёркина ).

Решение разностной схемы называется приближенным решением дифференциальной задачи.

Характеристика неявной разностной схемы

Рассмотрим одномерное дифференциальное уравнение параболического типа с :

(4.5)

Запишем для уравнения (4.5) неявную разностную схему :

(4.6)

Запишем :

(4.7)

Аппроксимация граничных условий (4.7) записана на (n метода и алгоритма решения неявной разностной схемы (4.6).
В разделе "
" было отмечено, что разностная схема (4.6) имеет такой же порядок аппроксимации , как и соответствующая ей явная разностная схема (4.2) , а именно:

В разделе " Доказательство абсолютной устойчивости неявной разностной схемы " было доказано, что неявная разностная схема (4.6) абсолютно устойчива, т.е. вне зависимости от выбора интервала деления на разностной сетке (или, иначе говоря, выбора расчётного шага по независимым переменным) погрешность решения неявной разностной схемы в процессе вычислений возрастать не будет. Отметим, что это, безусловно, является достоинством неявной разностной схемы (4.6) по сравнению с явной разностной схемой (4.2) , которая устойчива только при выполнения условия (3.12) . В то же время явная разностная схема имеет достаточно простой метод решения , а метод решения неявной разностной схемы (4.6), называемый методом прогонки , более сложен. Прежде чем перейти к изложению метода прогонки , необходимо вывести ряд соотношений , используемых этим методом.

Характеристика явной разностной схемы.

Рассмотрим одномерное дифференциальное уравнение параболического типа с начальным и граничными условиями :

(4.1)

Запишем для уравнения (4.1) явную разностную схему :

(4.2)

Запишем аппроксимацию начального и граничных условий :

(4.3)

Аппроксимация граничных условий (4.3) записана на (n + 1)-ом шаге по времени для удобства последующего изложения метода и алгоритма решения явной разностной схемы (4.2).
В разделе "
Порядок аппроксимации разностной схемы " было доказано, что разностная схема (4.2) имеет порядок аппроксимации :

В разделе " Доказательство условной устойчивости явной разностной схемы " было получено условие устойчивости данной разностной схемы, накладывающее ограничение на выбор интервала деления при создании разностной сетки (или, иначе говоря, ограничение на выбор расчётного шага по одной из независимых переменных):

Отметим, что это, безусловно, является недостатком явной разностной схемы (4.2). В то же время она имеет достаточно простой метод решения .


А также другие работы, которые могут Вас заинтересовать

6399. Сознание как проблема философии 58 KB
Сознание как проблема философии Основные философские позиции по проблеме сознания Теория отражения. Основные философские позиции по проблеме сознания. Представители объективного идеализма (Платон, Гегель) трактуют сознание, дух как вечное п...
6400. Диалектика как теоретическая система и метод познания 98.5 KB
Диалектика как теоретическая система и метод познания Исторические типы метафизики и диалектики Системность Детерминизм Развитие Исторические типы метафизики и диалектики Еще с древности люди заметили, что всем предметам и явлениям ми...
6401. Проблема человека в философии 71 KB
Проблема человека в философии Проблема человека в истории философии Проблема антропосоциогенеза Природа человека Проблема человека является центральной для всей духовной культуры общества, т.к. только через себя мы понимаем окружающий мир, о...
6402. Человеческая деятельность и ее содержание 116 KB
Человеческая деятельность и ее содержание Освоение и отчуждение. Проблема свободы. Основные способы освоения мира человеком. Познание. Практически-духовное освоение мира Освоение и отчуждение. Проблема свободы. Центральной проблемой...
6403. Общество как предмет философского анализа 71 KB
Общество как предмет философского анализа. Социальная философия и ее задачи. Основные философские подходы к пониманию общества. Структура общества Социальная философия и ее задачи. В обыденном сознании существует иллюзия непосредственного во...
6404. Философия истории. Движущие силы и субъекты исторического процесса 66 KB
Философия истории Предмет и задачи философии истории Периодизация истории общества Движущие силы и субъекты исторического процесса Предмет и задачи философии истории Для историка прошлое - это данность, которая находится вне...
6405. Стилі сучасної української літературної мови у професійному спілкуванні 44.27 KB
Стилі сучасної української літературної мови у професійному спілкуванні План Функціональні стилі української мови та сфера їх застосування. Основні ознаки функціональних стилів. Текст як форма реалізації мовнопрофесійної діяльності (комунікати...
6406. Основні поняття соціолінгвістики 121 KB
Основні поняття соціолінгвістики Мовна спільнота. Мовний код, субкод.. Перемикання і змішування кодів. Інтерференція Мовна варіативність. Мовна норма. Соціолект. Сфера використання мови. Білінгвізм. Ди...
6407. Правовідносин, що регулюються нормами трудового права 101 KB
Правовідносин, що регулюються нормами трудового права Поняття трудових правовідносин Правові відносини в суспільстві формуються і розвиваються внаслідок наявності правових норм, які приймаються державою для регулювання суспільних відносин. Всту...

Пример 1. Разностная схема для уравнения Пуассона, относящегося к эллиптическому типу.

Рассмотрим построение разностной схемы для первой краевой задачи для уравнения А и = f(x,y) в области, представляющей собой прямоугольник со сторонами, параллельными осям координат. Пусть с этим прямоугольником связана равномерная сетка с шагами h x и h y .

Краевую задачу

можно записать в операторной форме:


Отметим, что в эту запись включены и граничные условия.

Заменив дифференциальные операторы разностными, получим уравнения


которые аппроксимируют исходное дифференциальное уравнение со вторым порядком 0(h 2 + h 2) точности и действуют во всех внутренних точках области.

Разностные аналоги краевых условий будут иметь вид

Разностная аппроксимация дифференциального уравнения совместно с разностными аналогами краевых условий образуют разностную схему для уравнения Пуассона.

Разностную схему можно по аналогии с краевой задачей записать в операторном виде:

где в L/, включены как разностное уравнение, так и разностное краевое условие:


Разностное уравнение связывает значения сеточной функции в пяти точках, образующих разностный шаблон для этого уравнения. Для данного случая этот шаблон называют крест. Можно представить и другие шаблоны для этого уравнения.

Мы получим приближенное решение дифференциальной краевой задачи, если определим значения сеточной функции во всех внутренних узлах области. Для этого необходимо решить совместно систему алгебраических линейных уравнений, размерность которой равна количеству внутренних узлов области. В этом случае говорят о неявной разностной схеме. Любое интересующее нас значение Uij можно определить лишь из решения всей разностной задачи.

Относительно системы уравнений отметим два обстоятельства.

  • 1. Система имеет очень высокую размерность (М - 1) х (N - 1), а традиционные методы точного решения (например, метод Гаусса) требуют для решения число алгебраических операций, пропорциональное третьей степени размерности системы.
  • 2. В матрице системы много нулевых элементов (неплотная матрица). Это обстоятельства позволяет разработать экономичные методы приближенного решения.

Рассмотренная постановка разностной задачи характерна для эллиптических уравнений. В газовой динамике такой вид имеет уравнение для функции тока или для потенциала скорости. В других разделах мы рассмотрим эффективные методы разрешения таких разностных схем.


Рис. 2.8.

П р и м с р 2. Разностная схема для простейшего параболического уравнения (нестационарная теплопроводность в стержне единичной длины).

Рассмотрим следующую задачу:


Отмстим, что в случае параболического уравнения имеем открытую область. При построении разностной схемы возникают несколько вариантов связи между разностными производными по пространству и по времени.

Проинтегрируем уравнение в пределах одного временного шага:


В зависимости от того, какую квадратурную формулу мы примем для вычисления интеграла в правой части, получим разные разностные схемы (рис. 2.9).

Связывая разностную производную по времени с пространственной производной, определенной на п -м временном слое, получим

явную ’разностную схему

Это эквивалентно приближенному вычислению интеграла, стоящего в правой части (2.12), но способу левых прямоугольников.


Рис. 2.9. Сетка и шаблоны для уравнения теплопроводности: а - область и сетка; б - шаблон явной схемы; в - шаблон неявной схемы; г - шаблон семейства шеститочечных схем; д - шаблон схемы

«чехарда»

В приведенной формуле заключен и метод решения сеточных уравнений:

Значение сеточной функции на следующем временном слое

определяется через известные значения гф на предыдущем. Перемещаясь последовательно слоями от начального условия и(х , 0) = у(х), можно найти решение во всей расчетной области. Разностный шаблон для этой схемы приведен на рис. 2.9, б .

Оценивая интеграл через значение подынтегральной функции па слое п + 1, используем разностный шаблон вида рис. 2.9, б, а разностный аналог дифференциального уравнения примет вид

Для того чтобы найти значения сеточной функции на следующем временном слое, при использовании этой разностной схемы необходимо решить совместно столько уравнений вида (2.14), сколько внутренних узлов расположено на п - 1-1 -м временном слое. С учетом краевых условий = / п+1 , Мд Г +1 = m n+1 система позволяет построить решение на следующем временном слое при известных значениях сеточной функции на предыдущем. Передвигаясь от начальных значений слоями, на каждом из которых необходимо решать систему уравнений, можно построить приближенное решение во всей области.

Рассмотренная разностная схема представляет собой пример неявной разностной схемы, ее называют схемой с опережением или чисто неявной схемой.

Шеститочечный разностный шаблон порождает семейство разностных схем, частными случаями которого являются две предыдущие:


При а = 0 имеем явную схему, при а = I - неявную с опережением, при а > 0 - неявную. При а - 0,5 получаем широко известную в вычислительной практике симметричную схему Кранка Николсона.

Приведенные схемы, разумеется, не исчерпывают всего многообразия разностных схем, основанных на разностной аппроксимации дифференциальных операторов. Вот пример явной разностной схемы, основанной на центрировании временной производной, схемы, использующей сеточную функцию на трех временных слоях:

Разностный шаблон захватывает три временных слоя. Схема имеет второй порядок аппроксимации как по времени, так и по пространственной переменной и является явной. Эта схема обладает рядом существенных недостатков, от большей части которых можно избавиться, заменив и ” в аппроксимации пространственной производной средним значением по двум временным слоям:

Полученная таким образом явная трехслойная схема

называется схемой Дюфортпа - Франкела , а отсутствие в ней значения сеточной функции в центральном узле объясняет название «чехарда», которое иногда применяется для схем такого рода.

На примерах было показано, что для одной и той же краевой задачи можно записать несколько разных разностных схем, т.е. в распоряжении исследователя имеется достаточно большой их выбор. Каким же условиям должна удовлетворять разностная схема, чтобы разностное решение соответствовало решению исходной дифференциальной задачи? Этот вопрос будет рассмотрен в следующем разделе.