В квантовой физике следует говорить что. Между сознанием человека и квантовой физикой есть странная связь. Квантовая физика подтверждает Божественное Бытие

Есть много мест, с которых можно начать это обсуждение, и вот это так же хорошо, как другие: все в нашей Вселенной обладает одновременно природой частиц и волн. Если бы можно было сказать о магии так: «Все это волны, и только волны», это было бы замечательным поэтическим описанием квантовой физики. На самом деле все в этой вселенной обладает волновой природой.

Конечно, также все во Вселенной имеет природу частиц. Звучит странно, но это .

Описывать реальные объекты как частицы и волны одновременно будет несколько неточным. Собственно говоря, объекты, описываемые квантовой физикой, не являются частицами и волнами, а скорее принадлежат третьей категории, которая наследует свойства волн (частоту и длину волны, вместе с распространением в пространстве) и некоторые свойства частиц (их можно пересчитать и локализовать с определенной степенью). Это приводит к оживленным дебатам в физическом сообществе на тему того, будет ли вообще корректно говорить о свете как о частице; не потому, что есть противоречие в том, обладает ли свет природой частиц, а потому, что называть фотоны «частицами», а не «возбуждениями квантового поля» - значит, вводить студентов в заблуждение. Впрочем, это касается и того, можно ли называть электроны частицами, но такие споры останутся в кругах сугубо академических.

Эта «третья» природа квантовых объектов отражается в запутанном иногда языке физиков, которые обсуждают квантовые явления. Бозон Хиггса был обнаружен на Большом адронном коллайдере в качестве частицы, но вы наверняка слышали словосочетание «поле Хиггса», такой делокализованной вещи, которая заполняет все пространство. Это происходит, поскольку при определенных условиях вроде экспериментов со столкновением частиц более уместно обсуждать возбуждения поля Хиггса, нежели определять характеристики частицы, тогда как при других условиях вроде общих обсуждений того, почему у определенных частиц есть масса, более уместно обсуждать физику в терминах взаимодействия с квантовым полем вселенских масштабов. Это просто разные языки, описывающие одни и те же математические объекты.

Квантовая физика дискретна

Все в названии физики - слово «квантум» происходит от латинского «сколько» и отражает тот факт, что квантовые модели всегда включают что-то приходящее в дискретных величинах. Энергия, содержащаяся в квантовом поле, приходит в кратных величинах некой фундаментальной энергии. Для света это ассоциируется с частотой и длиной волны света - высокочастотный свет с короткой волной обладает огромной характерной энергией, тогда как низкочастотный свет с длинной волной обладает небольшой характерной энергией.

В обоих случаях между тем полная энергия, заключенная в отдельном световом поле, целочисленно кратна этой энергии - 1, 2, 14, 137 раз - и не встретить странных долей вроде полутора, «пи» или квадратному корню из двух. Это свойство также наблюдается в дискретных энергетических уровнях атомов, и энергетические зоны конкретны - некоторые величины энергий допускаются, остальные нет. Атомные часы работают благодаря дискретности квантовой физики, используя частоту света, связанного с переходом между двумя разрешенными состояниями в цезии, которая позволяет сохранить время на уровне, необходимом для осуществления «второго скачка».

Сверхточная спектроскопия также может быть использована для поиска вещей вроде темной материи и остается частью мотивации для работы института низкоэнергетической фундаментальной физики.

Это не всегда очевидно - даже некоторые вещи, которые квантовые в принципе, вроде излучения черного тела связаны с непрерывными распределениями. Но при ближайшем рассмотрении и при подключении глубокого математического аппарата квантовая теория становится еще более странной.

Квантовая физика является вероятностной

Одним из самых удивительных и (исторически, по крайней мере) противоречивых аспектов квантовой физики является то, что невозможно с уверенностью предсказать исход одного эксперимента с квантовой системой. Когда физики предсказывают исход определенного эксперимента, их предсказание носит форму вероятности нахождения каждого из конкретных возможных результатов, а сравнения между теорией и экспериментом всегда включают выведение распределения вероятностей из многих повторных экспериментов.

Математическое описание квантовой системы, как правило, принимает форму «волновой функции», представленной в уравнениях греческой буковой пси: Ψ. Ведется много дискуссий о том, что конкретно представляет собой волновая функция, и они разделили физиков на два лагеря: тех, кто видит в волновой функции реальную физическую вещь (онтические теоретики), и тех, кто считает, что волновая функция является исключительно выражением нашего знания (или его отсутствия) вне зависимости от лежащего ниже состояния отдельного квантового объекта (эпистемические теоретики).

В каждом классе основополагающей модели вероятность нахождения результата определяется не волновой функцией напрямую, а квадратом волновой функции (грубо говоря, все ей же; волновая функция - это сложный математический объект (а значит, включает воображаемые числа вроде квадратного корня или его отрицательного варианта), и операция получения вероятности немного сложнее, но «квадрата волновой функции» достаточно, чтобы понять основную суть идеи). Это известно как правило Борна в честь немецкого физика Макса Борна, впервые его вычислившего (в сноске к работе 1926 года) и удивившего многих людей уродливым его воплощением. Ведутся активные работы в попытках вывести правило Борна из более фундаментального принципа; но пока ни одна из них не была успешной, хотя и породила много интересного для науки.

Этот аспект теории также приводит нас к частицам, пребывающим в множестве состояний одновременно. Все, что мы можем предсказать, это вероятность, и до измерения с получением конкретного результата измеряемая система находится в промежуточном состоянии - состоянии суперпозиции, которое включает все возможные вероятности. А вот действительно ли система пребывает в множественных состояниях или находится в одном неизвестном - зависит от того, предпочитаете вы онтическую или эпистемическую модель. Обе они приводят нас к следующему пункту.

Квантовая физика нелокальна

Последний не был широко признан как таковой, в основном потому, что он ошибался. В работе 1935 года, вместе с его молодыми коллегами Борисом Подольким и Натаном Розеном (работа ЭПР), Эйнштейн привел четкое математическое заявление чего-то, что беспокоило его уже некоторое время, того, что мы называем «запутанностью».

Работа ЭПР утверждала, что квантовая физика признала существование систем, в которых измерения, сделанные в широко удаленных местах, могут коррелировать так, чтобы исход одного определял другое. Они утверждали, что это означает, что результаты измерений должны быть определены заранее, каким-либо общим фактором, поскольку в ином случае потребовалась бы передача результата одного измерения к месту проведения другого со скоростью, превышающей скорость света. Следовательно, квантовая физика должна быть неполной, быть приближением более глубокой теории (теории «скрытой локальной переменной», в которой результаты отдельных измерений не зависят от чего-то, что находится дальше от места проведения измерений, чем может покрыть сигнал, путешествующий со скоростью света (локально), а скорее определяется неким фактором, общим для обеих систем в запутанной паре (скрытая переменная).

Все это считалось непонятной сноской больше 30 лет, так как, казалось, не было никакого способа проверить это, но в середине 60-х годов ирландский физик Джон Белл более детально проработал последствия работы ЭПР. Белл показал, что вы можете найти обстоятельства, при которых квантовая механика предскажет корреляции между удаленными измерениями, которые будут сильнее любой возможной теории вроде предложенных Э, П и Р. Экспериментально это проверил в 70-х годах Джон Клозер и Ален Аспект в начале 80-х - они показали, что эти запутанные системы не могут быть потенциально объяснены никакой теорией локальной скрытой переменной.

Наиболее распространенный подход к пониманию этого результата заключается в предположении, что квантовая механика нелокальна: что результаты измерений, выполненных в определенном месте, могут зависеть от свойств удаленного объекта так, что это нельзя объяснить с использованием сигналов, движущихся на скорости света. Это, впрочем, не позволяет передавать информацию со сверхсветовой скоростью, хотя было проведено множество попыток обойти это ограничение с помощью квантовой нелокальности.

Квантовая физика (почти всегда) связана с очень малым

У квантовой физики есть репутация странной, поскольку ее предсказания кардинально отличаются от нашего повседневного опыта. Это происходит, поскольку ее эффекты проявляются тем меньше, чем больше объект - вы едва ли увидите волновое поведение частиц и того, как уменьшается длина волны с увеличением момента. Длина волны макроскопического объекта вроде идущей собаки настолько смехотворно мала, что если вы увеличите каждый атом в комнате до размеров Солнечной системы, длина волны пса будет размером с один атом в такой солнечной системе.

Это означает, что квантовые явления по большей части ограничены масштабами атомов и фундаментальных частиц, массы и ускорения которых достаточно малы, чтобы длина волны оставалась настолько малой, что ее нельзя было бы наблюдать прямо. Впрочем, прикладывается масса усилий, чтобы увеличить размер системы, демонстрирующей квантовые эффекты.

Квантовая физика - не магия


Предыдущий пункт весьма естественно подводит нас к этому: какой бы странной квантовая физика ни казалась, это явно не магия. То, что она постулирует, странное по меркам повседневной физики, но она строго ограничена хорошо понятными математическими правилами и принципами.

Поэтому если кто-то придет к вам с «квантовой» идеей, которая кажется невозможной, - бесконечная энергия, волшебная целительная сила, невозможные космические двигатели - это почти наверняка невозможно. Это не значит, что мы не можем использовать квантовую физику, чтобы делать невероятные вещи: мы постоянно пишем о невероятных прорывах с использованием квантовых явлений, и они уже порядком удивили человечество, это лишь означает, что мы не выйдем за границы законов термодинамики и здравого смысла.

Если вышеуказанных пунктов вам покажется мало, считайте это лишь полезной отправной точкой для дальнейшего обсуждения.

Новый эксперимент может пролить свет на удивительную скрытую механику квантовых суперпозиций.

Суперпозиция - понятие о том, что крошечные объекты могут существовать в нескольких местах или состояниях одновременно - является краеугольным камнем квантовой физики. Новый эксперимент пытается пролить свет на это загадочное явление.

Главный вопрос в квантовой механике, на который никто не знает ответа: что на самом деле происходит в суперпозиции - своеобразном состоянии, в котором частицы находятся в двух или более местах или состояниях одновременно? Группа исследователей из Израиля и Японии предложила эксперимент, который, наконец, позволит нам узнать что-то точное о природе этого загадочного явления.

Их эксперимент, который, по словам исследователей, может быть выполнен в течение нескольких месяцев, должен позволить ученым понять, где фактически находится объект - в конкретном случае частица света, называемая фотоном - когда она находится в суперпозиции. И исследователи предсказывают, что ответ будет еще более странным и шокирующим, чем «два места сразу».

Классический пример суперпозиции включает в себя обстрел фотонов сквозь две параллельные щели в барьере. Одним из фундаментальных аспектов квантовой механики является то, что крошечные частицы могут вести себя подобно волнам, так что те, которые проходят через одну щель, «мешают» тем, кто проходит через другую, их волнистые ряби, увеличивая или меняя друг друга, создают характерную структуру на экране детектора. Странная вещь, однако, заключается в том, что это вмешательство происходит, даже если одновременно выстреливается только одна частица. Частица как бы проходит через обе щели сразу. Это и есть суперпозиция.

И это очень странно: измерение того, через какую именно щель преодолевает частица, неизменно указывает на то, что она проходит только через одну щель, и в таком случае волновая интерференция («квантовость», если хотите) исчезает. Сам акт измерения, похоже, «разрушает» суперпозицию. «Мы знаем, что в суперпозиции происходит нечто странное » - говорит физик Авшалом Элицер из израильского института перспективных исследований. «Но вы не можете это измерить. Это то, что делает квантовую механику настолько загадочной».

На протяжении десятилетий исследователи останавливались в этом очевидном тупике. Они не могут точно сказать, что такое суперпозиция, не наблюдая за ней; но если они попытаются взглянуть на неё, она исчезнет. Одно из возможных решений, разработанных бывшим наставником Элицура, израильским физиком Якиром Ааароновым в Университете Чепмена и его сотрудниками, предлагает способ узнать что-то о квантовых частицах перед измерением. Ахароновский подход называется формализмом двух состояний (TSVF) квантовой механики, а постулаты квантовых событий в некотором смысле определяются квантовыми состояниями не только в прошлом, но и в будущем. То есть, TSVF предполагает, что квантовая механика работает одинаково как вперед, так и назад во времени. С этой точки зрения причины, по-видимому, могут распространяться назад во времени, возникающие после эффектов.

Но не нужно воспринимать это странное понятие буквально. Скорее всего, в TSVF можно получить ретроспективное знание о том, что произошло в квантовой системе: вместо того, чтобы просто измерять, где заканчивается частица, исследователь выбирает конкретное место для поиска. Это называется post-selection, и оно предоставляет больше информации, чем любой безусловный взгляд на результаты. Это связано с тем, что состояние частицы в любой момент оценивается ретроспективно в свете всей ее истории вплоть до измерения, включая измерение. Получается, что исследователь - просто выбрав для поиска конкретный результат - затем приходит к выводу, что результат должен произойти. Это немного похоже на то, как если вы включаете телевизор в момент, когда должна транслироваться ваша любимая программа, но само ваше действие заставляет эту программу транслироваться в этот самый момент. «Общепризнано, что TSVF математически эквивалентен стандартной квантовой механике» - говорит Дэвид Уоллес, философ науки в Университете Южной Калифорнии, специализирующийся на интерпретации квантовой механики. «Но это приводит к тому, что некоторые вещи не видят иначе».

Возьмем, к примеру, вариант двухсекундного эксперимента, разработанного Аароновым и сотрудником Левом Вайдманом в 2003 году, который они интерпретировали с помощью TSVF. Пара описала (но не построила) оптическую систему, в которой один фотон действует как «затвор», который закрывает щель, заставляя другой «пробный» фотон приближаться к щели, чтобы отражаться так, как она появилась. После измерений пробного фотона, как показали Ахаронов и Вайдман, можно заметить фотоснимок затвора в суперпозиции, закрывающей одновременно (или даже произвольно много) щелей одновременно. Другими словами, этот мысленный эксперимент в теории позволил бы с уверенностью сказать, что фотон затвора одновременно находится «здесь» и «там». Хотя эта ситуация кажется парадоксальной из нашего повседневного опыта, это один хорошо изученный аспект так называемых «нелокальных» свойств квантовых частиц, где все понятие четко определенного положения в космосе растворяется.

В 2016 году физики Рио Окамото и Шигеки Такеучи из Киотского университета экспериментально подтвердили предсказания Ааронова и Вайдмана, используя светопроводящую схему, в которой фотосъемка затвора создается с помощью квантового маршрутизатора, устройства, которое позволяет одному фотону управлять маршрутом другого. «Это был новаторский эксперимент, который позволил установить одновременное положение частицы в двух местах» - говорит коллега Элицура Элиаху Коэн из Оттавского университета в Онтарио.

Теперь Элицур и Коэн объединились с Окамото и Такеучи, чтобы придумать еще более умопомрачительный эксперимент. Они считают, что это позволит исследователям с уверенностью узнать больше о расположении частицы в суперпозиции в последовательности разных точек времени до того, как будут сделаны какие-либо фактические измерения.

На этот раз маршрут зондового фотона будет разделен на три части зеркалами. Вдоль каждого из этих путей он может взаимодействовать с фотоном затвора в суперпозиции. Эти взаимодействия можно считать выполненными в коробках с надписью A, B и C, каждая из которых расположена вдоль каждого из трех возможных путей фотона. Рассматривая самоинтерференцию зондового фотона, можно будет ретроспективно заключить с уверенностью, что частица затвора находилась в данном ящике в определенное время.

Эксперимент сконструирован таким образом, чтобы пробный фотон мог показывать только интерференцию в случае взаимодействия с фотоном затвора в определенной последовательности мест и времен: а именно, если фотон затвора находился в обоих блоках A и C в некоторый момент времени (t1), то при более позднем времени (t2) - только в C и еще в более позднее время (t3) - как в B, так и в C. Таким образом, интерференция в зондирующем фотоне была бы окончательным признаком того, что фотон затвора действительно проходит через эту странную последовательность разрозненных явлений среди ящиков в разное время - идея Элицура, Коэна и Ааронова, которые в прошлом году предположили, что одна частица одновременно проходит по трем ящикам. «Мне нравится, как эта статья ставит вопросы о том, что происходит с точки зрения целых историй, а не мгновенных состояний», - говорит физик Кен Уортон из Университета штата Сан-Хосе, который не участвует в новом проекте. «Говорить о «состояниях»- это старая повсеместная предвзятость, тогда как полные истории, как правило, гораздо более богаты и интересны».

Это именно то, к чему, по утверждению Элицура дает доступ новый эксперимент с TSVF. Очевидное исчезновение частиц в одном месте за один раз - и их повторное появление в других местах и времени - предполагает новое и необычное видение лежащих в основе процессов, связанных с нелокальным существованием квантовых частиц. Благодаря объективу TSVF, говорит Элицур, это мерцающее, постоянно меняющееся существование можно понять как серию событий, в которых присутствие частицы в одном месте каким-то образом «отменяется» своей собственной «противоположной стороной» в том же месте. Он сравнивает это с понятием, введенным британским физиком Полом Дираком в 1920-х годах, который утверждал, что частицы обладают античастицами, и, если их собрать вместе, частица и античастица могут уничтожить друг друга. Эта картина сначала казалась просто манерой говорить, но вскоре привела к открытию антиматерии. Исчезновение квантовых частиц не является «аннигиляцией» в этом же смысле, но оно несколько аналогично - эти предполагаемые противоположные частицы, полагает Элицур, должны обладать отрицательной энергией и отрицательной массой, позволяя им отменить их аналоги.

Поэтому, хотя традиционные «два места одновременно» суперпозиции могут казаться довольно странными, «возможно, суперпозиция представляет собой совокупность состояний, которые еще более сумасшедшие» - говорит Элицур. «Квантовая механика просто рассказывает вам об их среднем состоянии». Последующий выбор позволяет изолировать и проверить только некоторые из этих состояний с большим разрешением, предполагает он. Такая интерпретация квантового поведения была бы, по его словам, «революционной», потому что это повлекло бы за собой до сих пор недопустимый зверинец реальных (но очень странных) состояний, лежащих в основе противоречивых квантовых явлений.

Исследователи говорят, что проведение фактического эксперимента потребует тонкой настройки производительности их квантовых маршрутизаторов, но они надеются, что их система будет готова к нему через три-пять месяцев. Пока некоторые наблюдатели ожидают его с замиранием сердца. «Эксперимент должен работать, - говорит Уортон, - но он никого не убедит, поскольку результаты прогнозируются стандартной квантовой механикой». Другими словами, не нет веских оснований интерпретировать результат в терминах TSVF.

Элицур соглашается, что их эксперимент мог быть задуман с использованием общепринятого взгляда на квантовую механику, которая царила десятилетия назад, но этого никогда не было. «Разве это не является хорошим показателем надежности TSVF ?» - спрашивает он. И если кто-то подумает, что они могут сформулировать другую картину того «что действительно происходит» в этом эксперименте, используя стандартную квантовую механику, он добавляет: «Хорошо, пусть они попробуют! »

Экология познания: Неподготовленного слушателя квантовая физика пугает с самого начала знакомства. Она странная и нелогичная, даже для физиков, которые имеют с ней дело каждый день. Но она не непонятная

Неподготовленного слушателя квантовая физика пугает с самого начала знакомства. Она странная и нелогичная, даже для физиков, которые имеют с ней дело каждый день. Но она не непонятная. Если вас интересует квантовая физика, на самом деле есть шесть ключевых понятий из нее, которые необходимо удерживать в уме. Нет, они мало связаны с квантовыми явлениями . И это не мысленные эксперименты. Просто намотайте их на ус, и квантовую физику будет намного проще понять.

Все состоит из волн - и частиц тоже

Есть много мест, с которых можно начать это обсуждение, и вот это так же хорошо, как другие: все в нашей Вселенной обладает одновременно природой частиц и волн. Если бы можно было сказать о магии так: «Все это волны, и только волны», это было бы замечательным поэтическим описанием квантовой физики. На самом деле все в этой вселенной обладает волновой природой.

Конечно, также все во Вселенной имеет природу частиц. Звучит странно, но это экспериментальный факт.

Описывать реальные объекты как частицы и волны одновременно будет несколько неточным. Собственно говоря, объекты, описываемые квантовой физикой, не являются частицами и волнами, а скорее принадлежат третьей категории, которая наследует свойства волн (частоту и длину волны, вместе с распространением в пространстве) и некоторые свойства частиц (их можно пересчитать и локализовать с определенной степенью). Это приводит к оживленным дебатам в физическом сообществе на тему того, будет ли вообще корректно говорить о свете как о частице; не потому, что есть противоречие в том, обладает ли свет природой частиц, а потому, что называть фотоны «частицами», а не «возбуждениями квантового поля» - значит, вводить студентов в заблуждение. Впрочем, это касается и того, можно ли называть электроны частицами, но такие споры останутся в кругах сугубо академических.

Эта «третья» природа квантовых объектов отражается в запутанном иногда языке физиков, которые обсуждают квантовые явления. Бозон Хиггса был обнаружен на Большом адронном коллайдере в качестве частицы, но вы наверняка слышали словосочетание «поле Хиггса», такой делокализованной вещи, которая заполняет все пространство. Это происходит, поскольку при определенных условиях вроде экспериментов со столкновением частиц более уместно обсуждать возбуждения поля Хиггса, нежели определять характеристики частицы, тогда как при других условиях вроде общих обсуждений того, почему у определенных частиц есть масса, более уместно обсуждать физику в терминах взаимодействия с квантовым полем вселенских масштабов. Это просто разные языки, описывающие одни и те же математические объекты.

Квантовая физика дискретна

Все в названии физики - слово «квантум» происходит от латинского «сколько» и отражает тот факт, что квантовые модели всегда включают что-то приходящее в дискретных величинах. Энергия, содержащаяся в квантовом поле, приходит в кратных величинах некой фундаментальной энергии. Для света это ассоциируется с частотой и длиной волны света - высокочастотный свет с короткой волной обладает огромной характерной энергией, тогда как низкочастотный свет с длинной волной обладает небольшой характерной энергией.

В обоих случаях между тем полная энергия, заключенная в отдельном световом поле, целочисленно кратна этой энергии - 1, 2, 14, 137 раз - и не встретить странных долей вроде полутора, «пи» или квадратному корню из двух. Это свойство также наблюдается в дискретных энергетических уровнях атомов, и энергетические зоны конкретны - некоторые величины энергий допускаются, остальные нет. Атомные часы работают благодаря дискретности квантовой физики, используя частоту света, связанного с переходом между двумя разрешенными состояниями в цезии, которая позволяет сохранить время на уровне, необходимом для осуществления «второго скачка».

Сверхточная спектроскопия также может быть использована для поиска вещей вроде темной материи и остается частью мотивации для работы института низкоэнергетической фундаментальной физики.

Это не всегда очевидно - даже некоторые вещи, которые квантовые в принципе, вроде излучения черного тела связаны с непрерывными распределениями. Но при ближайшем рассмотрении и при подключении глубокого математического аппарата квантовая теория становится еще более странной.

Квантовая физика является вероятностной

Одним из самых удивительных и (исторически, по крайней мере) противоречивых аспектов квантовой физики является то, что невозможно с уверенностью предсказать исход одного эксперимента с квантовой системой. Когда физики предсказывают исход определенного эксперимента, их предсказание носит форму вероятности нахождения каждого из конкретных возможных результатов, а сравнения между теорией и экспериментом всегда включают выведение распределения вероятностей из многих повторных экспериментов.

Математическое описание квантовой системы, как правило, принимает форму «волновой функции», представленной в уравнениях греческой буковой пси: Ψ. Ведется много дискуссий о том, что конкретно представляет собой волновая функция, и они разделили физиков на два лагеря: тех, кто видит в волновой функции реальную физическую вещь (онтические теоретики), и тех, кто считает, что волновая функция является исключительно выражением нашего знания (или его отсутствия) вне зависимости от лежащего ниже состояния отдельного квантового объекта (эпистемические теоретики).

В каждом классе основополагающей модели вероятность нахождения результата определяется не волновой функцией напрямую, а квадратом волновой функции (грубо говоря, все ей же; волновая функция - это сложный математический объект (а значит, включает воображаемые числа вроде квадратного корня или его отрицательного варианта), и операция получения вероятности немного сложнее, но «квадрата волновой функции» достаточно, чтобы понять основную суть идеи). Это известно как правило Борна в честь немецкого физика Макса Борна, впервые его вычислившего (в сноске к работе 1926 года) и удивившего многих людей уродливым его воплощением. Ведутся активные работы в попытках вывести правило Борна из более фундаментального принципа; но пока ни одна из них не была успешной, хотя и породила много интересного для науки.

Этот аспект теории также приводит нас к частицам, пребывающим в множестве состояний одновременно. Все, что мы можем предсказать, это вероятность, и до измерения с получением конкретного результата измеряемая система находится в промежуточном состоянии - состоянии суперпозиции, которое включает все возможные вероятности. А вот действительно ли система пребывает в множественных состояниях или находится в одном неизвестном - зависит от того, предпочитаете вы онтическую или эпистемическую модель. Обе они приводят нас к следующему пункту.

Квантовая физика нелокальна

Последний великий вклад Эйнштей на в физику не был широко признан как таковой, в основном потому, что он ошибался. В работе 1935 года, вместе с его молодыми коллегами Борисом Подольким и Натаном Розеном (работа ЭПР), Эйнштейн привел четкое математическое заявление чего-то, что беспокоило его уже некоторое время, того, что мы называем «запутанностью».

Работа ЭПР утверждала, что квантовая физика признала существование систем, в которых измерения, сделанные в широко удаленных местах, могут коррелировать так, чтобы исход одного определял другое. Они утверждали, что это означает, что результаты измерений должны быть определены заранее, каким-либо общим фактором, поскольку в ином случае потребовалась бы передача результата одного измерения к месту проведения другого со скоростью, превышающей скорость света. Следовательно, квантовая физика должна быть неполной, быть приближением более глубокой теории (теории «скрытой локальной переменной», в которой результаты отдельных измерений не зависят от чего-то, что находится дальше от места проведения измерений, чем может покрыть сигнал, путешествующий со скоростью света (локально), а скорее определяется неким фактором, общим для обеих систем в запутанной паре (скрытая переменная).

Все это считалось непонятной сноской больше 30 лет, так как, казалось, не было никакого способа проверить это, но в середине 60-х годов ирландский физик Джон Белл более детально проработал последствия работы ЭПР. Белл показал, что вы можете найти обстоятельства, при которых квантовая механика предскажет корреляции между удаленными измерениями, которые будут сильнее любой возможной теории вроде предложенных Э, П и Р. Экспериментально это проверил в 70-х годах Джон Клозер и Ален Аспект в начале 80-х - они показали, что эти запутанные системы не могут быть потенциально объяснены никакой теорией локальной скрытой переменной.

Наиболее распространенный подход к пониманию этого результата заключается в предположении, что квантовая механика нелокальна: что результаты измерений, выполненных в определенном месте, могут зависеть от свойств удаленного объекта так, что это нельзя объяснить с использованием сигналов, движущихся на скорости света. Это, впрочем, не позволяет передавать информацию со сверхсветовой скоростью, хотя было проведено множество попыток обойти это ограничение с помощью квантовой нелокальности.

Квантовая физика (почти всегда) связана с очень малым

У квантовой физики есть репутация странной, поскольку ее предсказания кардинально отличаются от нашего повседневного опыта. Это происходит, поскольку ее эффекты проявляются тем меньше, чем больше объект - вы едва ли увидите волновое поведение частиц и того, как уменьшается длина волны с увеличением момента. Длина волны макроскопического объекта вроде идущей собаки настолько смехотворно мала, что если вы увеличите каждый атом в комнате до размеров Солнечной системы, длина волны пса будет размером с один атом в такой солнечной системе.

Это означает, что квантовые явления по большей части ограничены масштабами атомов и фундаментальных частиц, массы и ускорения которых достаточно малы, чтобы длина волны оставалась настолько малой, что ее нельзя было бы наблюдать прямо. Впрочем, прикладывается масса усилий, чтобы увеличить размер системы, демонстрирующей квантовые эффекты.

Квантовая физика - не магия

Предыдущий пункт весьма естественно подводит нас к этому: какой бы странной квантовая физика ни казалась, это явно не магия. То, что она постулирует, странное по меркам повседневной физики, но она строго ограничена хорошо понятными математическими правилами и принципами.

Поэтому если кто-то придет к вам с «квантовой» идеей, которая кажется невозможной, - бесконечная энергия, волшебная целительная сила, невозможные космические двигатели - это почти наверняка невозможно. Это не значит, что мы не можем использовать квантовую физику, чтобы делать невероятные вещи: мы постоянно пишем о невероятных прорывах с использованием квантовых явлений, и они уже порядком удивили человечество, это лишь означает, что мы не выйдем за границы законов термодинамики и здравого смысла.

Если вышеуказанных пунктов вам покажется мало, считайте это лишь полезной отправной точкой для дальнейшего обсуждения. опубликовано

Присоединяйтесь к нам в

Никто не понимает, что такое сознание и как оно работает. Никто не понимает и квантовую механику. Может ли это быть большим, чем просто совпадение? «Я не могу определить реальную проблему, поэтому подозреваю, что реальной проблемы нет, но я не уверен, что нет никакой реальной проблемы». Американский физик Ричард Фейнман сказал это о загадочных парадоксах квантовой механики. Сегодня эту теорию физики используют для описания мельчайших объектов во Вселенной. Но точно так же он мог сказать о запутанной проблеме сознания.

Некоторые ученые думают, что мы уже понимаем сознание или что это просто иллюзия. Но многим другим кажется, что мы вообще даже и близко не подобрались к сути сознания.

Многолетняя головоломка под названием «сознание» даже привела к тому, что некоторые ученые попытались объяснить ее при помощи квантовой физики. Но их усердие было встречено с изрядной долей скепсиса, и это не удивительно: кажется неразумным объяснять одну загадку при помощи другой.

Но такие идеи ни разу не абсурдны и даже не с потолка взялись.

С одной стороны, к великому неудовольствию физиков, разум поначалу отказывается постигать раннюю квантовую теорию. Более того, квантовые компьютеры, по прогнозам, будут способны на такие вещи, на какие не способны обычные компьютеры. Это напоминает нам, что наш мозг до сих пор способен на подвиги, недоступны для искусственного интеллекта. «Квантовое сознание» широко высмеивается как мистическая ерунда, но никто так и не смог ее окончательно развеять.

Квантовая механика - лучшая теория, которая у нас есть, способная описать мир на уровне атомов и субатомных частиц. Пожалуй, самой известной из ее загадок является тот факт, что результат квантового эксперимента может меняться в зависимости от того, решаем мы измерить свойства участвующих в нем частиц или нет.

Когда первопроходцы квантовой теории впервые обнаружили этот «эффект наблюдателя», они встревожились не на шутку. Казалось, он подрывает предположение, лежащее в основе всей науки: что где-то там существует объективный мир, независимый от нас. Если мир действительно ведет себя зависимо от того, как - или если - мы смотрим на него, что будет означать «реальность» на самом деле?

Некоторые ученые были вынуждены заключить, что объективность - это иллюзия, и что сознание должно играть активную роль в квантовой теории. Другие же просто не видели в этом никакого здравого смысла. Например, Альберт Эйнштейн был раздосадован: неужели Луна существует, только когда вы на нее смотрите?

Сегодня некоторые физики подозревают, что дело не в том, что сознание влияет на квантовую механику… а в том, что оно вообще появилось, благодаря ей. Они полагают, что квантовая теория может понадобиться нам, чтобы вообще понять, как работает мозг. Может ли быть такое, что как квантовые объекты могут находиться в двух местах одновременно, так и квантовый мозг может одновременно иметь в виду две взаимоисключающие вещи?

Эти идеи вызывают споры. Может оказаться так, что квантовая физика никак не связана с работой сознания. Но они хотя бы демонстрируют, что странная квантовая теория заставляет нас думать о странных вещах.

Лучше всего квантовая механика пробивается в сознание человека через эксперимент с двойной щелью. Представьте себе луч света, который падает на экран с двумя близко расположенными параллельными щелями. Часть света проходит через щели и падает на другой экран.

Можно представить свет в виде волны. Когда волны проходят через две щели, как в эксперименте, они сталкиваются - интерферируют - между собой. Если их пики совпадают, они усиливают друг друга, что выливается в серию черно-белых полос света на втором черном экране.

Этот эксперимент использовался, чтобы показать волновой характер света, больше 200 лет, пока не появилась квантовая теория. Тогда эксперимент с двойной щелью провели с квантовыми частицами - электронами. Это крошечные заряженные частицы, компоненты атома. Непонятным образом, но эти частицы могут вести себя как волны. То есть они подвергаются дифракции, когда поток частиц проходит через две щели, производя интерференционную картину.

Теперь предположим, что квантовые частицы проходят через щели одна за другой и их прибытие на экран тоже будет наблюдаться пошагово. Теперь нет ничего очевидного, что заставляло бы частицу интерферировать на ее пути. Но картина попадания частиц все равно будет демонстрировать интерференционные полосы.

Все указывает на то, что каждая частица одновременно проходит через обе щели и интерферирует сама с собой. Это сочетание двух путей известно как состояние суперпозиции.

Но вот что странно.

Если разместить детектор в одной из щелей или за ней, мы могли бы выяснить, проходит через нее частицы или нет. Но в таком случае интерференция исчезает. Простой факт наблюдения пути частицы - даже если это наблюдение не должно мешать движению частицы - меняет результат.

Физик Паскуаль Йордан, который работал с квантовым гуру Нильсом Бором в Копенгагене в 1920-х годах, сформулировал это так: «Наблюдения не только нарушают то, что должно быть измерено, они это определяют… Мы принуждаем квантовую частицу выбирать определенное положение». Другими словами, Йордан говорит, что «мы сами производим результаты измерений».

Если это так, объективную реальность можно просто выбросить в окно.

Но на этом странности не заканчиваются.

Если природа меняет свое поведение в зависимости от того, смотрим мы или нет, мы могли бы попытаться обвести ее вокруг пальца. Для этого мы могли бы измерить, какой путь выбрала частица, проходя через двойную щель, но только после того, как пройдет через нее. К тому времени она уже должна «определиться», пройти через один путь или через оба.

Провести такой эксперимент в 1970-х годах предложил американский физик Джон Уилер, и в следующие десять лет эксперимент с «отложенным выбором» провели. Он использует умные методы измерения путей квантовых частиц (как правило, частиц света - фотонов) после того, как они выбирают один путь или суперпозицию двух.

Оказалось, что, как и предсказывал Бор, нет никакой разницы, задерживаем мы измерения или нет. До тех пор, пока мы измеряем путь фотона до его попадания и регистрацию в детекторе, интерференции нет. Создается впечатление, что природа «знает» не только когда мы подглядываем, но и когда мы планируем подглядывать.

Юджин Вигнер

Всякий раз, когда в этих экспериментах мы открываем путь квантовой частицы, ее облако возможных маршрутов «сжимается» в единое четко определенное состояние. Более того, эксперимент с задержкой предполагает, что сам акт наблюдения, без какого-либо физического вмешательства, вызванного измерением, может стать причиной коллапса. Значит ли это, что истинный коллапс происходит только тогда, когда результат измерения достигает нашего сознания?

Такую возможность предложил в 1930-х годах венгерский физик Юджин Вигнер. «Из этого следует, что квантовое описание объектов находится под влиянием впечатлений, поступающих в мое сознание», писал он. «Солипсизм может быть логически согласованным с квантовой механикой».

Уилера даже забавляла мысль о том, что наличие живых существ, способных «наблюдать», преобразовала то, что ранее было множество возможных квантовых прошлых, в одну конкретную историю. В этом смысле, говорит Уилер, мы становимся участниками эволюции Вселенной с самого ее начала. По его словам, мы живем в «соучастной вселенной».

Физики до сих пор не могут выбрать лучшую интерпретацию этих квантовых экспериментов, и в некоторой степени право этого предоставляется и вам. Но, так или иначе, подтекст очевиден: сознание и квантовая механика каким-то образом связаны.

Начиная с 1980-х годов, английский физик Роджер Пенроуз предположил, что эта связь может работать в другом направлении. Он сказал, что независимо от того, влияет сознание на квантовую механику или нет, возможно, квантовая механика участвует в сознании.

Физик и математик Роджер Пенроуз

И еще Пенроуз спросил: что, если в нашем мозге существуют молекулярные структуры, способные менять свое состояние в ответ на одно квантовое событие? Могут ли эти структуры принимать состояние суперпозиции, подобно частицам в эксперименте с двойной щелью? Могут ли эти квантовые суперпозиции затем проявляться в том, как нейроны сообщаются посредством электрических сигналов?

Может быть, говорил Пенроуз, наша способность поддерживать, казалось бы, несовместимые психические состояния не причуда восприятия, а реальный квантовый эффект?

В конце концов, человеческий мозг, похоже, в состоянии обрабатывать когнитивные процессы, которые до сих пор по возможностям намного превосходят цифровые вычислительные машины. Возможно, мы даже способны выполнять вычислительные задачи, которые нельзя исполнить на обычные компьютерах, использующих классическую цифровую логику.

Пенроуз впервые предположил, что квантовые эффекты присутствуют в человеческом сознании, в книге 1989 года ‘The Emperor’s New Mind’. Главной его идеей стала «оркестрованная объективная редукция». Объективная редукция, по мнению Пенроуза, означает, что коллапс квантовой интерференции и суперпозиции является реальным физическим процессом, будто лопающийся пузырь.

Оркестрованная объективная редукция опирается на предположение Пенроуза о том, что гравитация, которая влияет на повседневные объекты, стулья или планеты, не демонстрирует квантовых эффектов. Пенроуз полагает, что квантовая суперпозиция становится невозможной для объектов больше атомов, потому что их гравитационное воздействие в таком случае привело бы к существованию двух несовместимых версий пространства-времени.

Дальше Пенроуз развивал эту идею с американским врачом Стюартом Хамероффом. В своей книге «Тени разума» (1994) он предположил, что структуры, участвующие в этом квантовом познании, могут быть белковыми нитями - микротрубочками. Они имеются в большинстве наших клеток, в том числе и нейронах мозга. Пенроуз и Хамерофф утверждали, что в процесс колебания микротрубочки могут принимать состояние квантовой суперпозиции.

Но нет ничего в поддержку того, что это вообще возможно.

Предполагали, что идею квантовых суперпозиций в микротрубочках поддержат эксперименты, предложенные в 2013 году, но на деле в этих исследованиях не упоминалось о квантовых эффектах. Кроме того, большинство исследователей считают, что идея оркестрованных объективных редукций была развенчана исследованием, опубликованным в 2000 году. Физик Макс Тегмарк рассчитал, что квантовые суперпозиции молекул, вовлеченных в нейронные сигналы, не смогут просуществовать даже мгновения времени, необходимого для передачи сигнала.

Квантовые эффекты, включая суперпозицию, очень хрупкие и разрушаются в процессе так называемой декогеренции. Это процесс обусловлен взаимодействиями квантового объекта с окружающей его средой, поскольку его «квантовость» утекает.

Декогеренция, как полагали, должна протекать чрезвычайно быстро в теплых и влажных средах, таких как живые клетки.

Нервные сигналы - это электрические импульсы, вызванные прохождением электрически заряженных атомов через стенки нервных клеток. Если один из таких атомов был в суперпозиции, а затем столкнулся с нейроном, Тегмарк показал, что суперпозиция должна распадаться менее чем за одну миллиардную миллиардной доли секунды. Чтобы нейрон выпустил сигнал, ему нужно в десять тысяч триллионов раз больше времени.

Именно поэтому идеи о квантовых эффектах в головном мозге не проходят проверку скептиков.

Но Пенроуз неумолимо настаивает на гипотезе ООР. И невзирая на предсказание сверхбыстрой декогеренции Тегмарка в клетках, другие ученые нашли проявления квантовых эффектов у живых существ. Некоторые утверждают, что квантовая механика используется перелетными птицами, которые используют магнитную навигацию, и зелеными растениями, когда они используют солнечный свет для производства сахара в процессе фотосинтеза.

При всем этом идея того, что мозг может использовать квантовые трюки, отказывается уходить насовсем. Потому что в ее пользу нашли другой аргумент.

Может ли фосфор поддерживать квантовое состояние?

В исследовании 2015 года физик Мэтью Фишер из Калифорнийского университета в Санта-Барбаре утверждал, что мозг может содержать молекулы, способные выдерживать более мощные квантовые суперпозиции. В частности, он полагает, что ядра атомов фосфора могут иметь такую способность. Атомы фосфора имеются в живых клетках повсюду. Они часто принимают форму ионов фосфата, в которых один атом фосфора соединяется с четырьмя атомами кислорода.

Такие ионы являются основной единицей энергии в клетках. Большая часть энергии клетки хранится в молекулах АТФ, которые содержат последовательность из трех фосфатных групп, соединенных с органической молекулой. Когда один из фосфатов отрезается, высвобождается энергия, которая используется клеткой.

У клеток есть молекулярные машины для сборки ионов фосфата в группы и для их расщепления. Фишер предложил схему, в которой два фосфатных иона могут быть размещены в суперпозиции определенного вида: в запутанном состоянии.

У ядер фосфора есть квантовое свойство - спин - которое делает их похожими на маленькие магниты с полюсами, указывающими в определенных направлениях. В запутанном состоянии спин одного ядра фосфора зависит от другого. Иными словами, запутанные состояния - это состояния суперпозиции с участием более одной квантовой частицы.

Фишер говорит, что квантово-механическое поведение этих ядерных спинов может противостоять декогеренции. Он согласен с Тегмарком в том, что квантовые вибрации, о которых говорили Пенроуз и Хамерофф, будут сильно зависеть от их окружения и «декогерировать почти сразу же». Но спины ядер не так сильно взаимодействуют со своим окружением.

И все же квантовое поведение спинов ядер фосфора должно быть «защищено» от декогеренции.

У квантовых частиц может быть разный спин

Это может произойти, говорит Фишер, если атомы фосфора будут включены в более крупные объекты, которые названы «молекулами Познера». Они представляют собой кластеры из шести фосфатных ионов в сочетании с девятью ионами кальция. Существуют определенные указания на то, что такие молекулы могут быть в живых клетках, но пока они не очень убедительны.

В молекулах Познера, утверждает Фишер, спины фосфора могут противостоять декогеренции в течение дня или около того, даже в живых клетках. Следовательно, могут влиять и на работу мозга.

Идея в том, что молекулы Познера могут быть поглощены нейронами. Оказавшись внутри, молекулы будут активировать сигнал другому нейрону, распадаясь и выпуская ионы кальция. Из-за запутанности в молекулах Познера, два таких сигнала могут оказаться запутанными в свою очередь: в некотором роде, это будет квантовая суперпозиция «мысли». «Если квантовая обработка с ядерными спинами на самом деле присутствует в головном мозге, она была бы чрезвычайно распространенным явлением, происходящим постоянно», говорит Фишер.

Впервые эта идея пришла к нему в голову, когда он раздумывал о психической болезни.

Капсула карбоната лития

«Мое введение в биохимию мозга началось, когда я решил три-четыре года назад исследовать, как и почему ион лития оказывает такой радикальный эффект при лечении психических отклонений», говорит Фишер.

Литиевые препараты широко используются для лечения биполярного расстройства. Они работают, но никто на самом деле не знает почему.

«Я не искал квантовое объяснение, говорит Фишер. Но затем он наткнулся на работу, в которой описывалось, что препараты лития оказывали различное влияние на поведение крыс в зависимости от того, какая форма - или «изотоп» - лития использовалась.

Поначалу это озадачило ученых. С химической точки зрения, различные изотопы ведут себя почти одинаково, поэтому если литий работал как обычный препарат, изотопы должны были иметь один и тот же эффект.

Нервные клетки связаны с синапсами

Но Фишер понял, что ядра атомов различных изотопов лития могут иметь различные спины. Это квантовое свойство может влиять на то, как действуют препараты на основе лития. Например, если литий заменяет кальций в молекулах Познера, спины лития могут оказывать эффект на атомы фосфора и препятствовать их запутыванию.

Если это верно, то сможет и объяснить, почему литий может лечить биполярное расстройство.

На данный момент предположение Фишера является не более чем интригующей идеей. Но есть несколько способов ее проверить. Например, что спины фосфора в молекулах Познера могут сохранять квантовую когерентность в течение длительного времени. Это Фишер и планирует проверить дальше.

И все же он опасается быть связанным с более ранними представлениями о «квантовом сознании», которые считает в лучшем случае спекулятивными.

Сознание - глубокая тайна

Физики не очень любят оказываться внутри своих же теорий. Многие из них надеются, что сознание и мозг можно будет извлечь из квантовой теории, а может, и наоборот. Но ведь мы не знаем, что такое сознание, не говоря уж о том, что у нас нет теории, которая его описывает.

Более того, изредка звучат громкие возгласы, что квантовая механика позволит нам овладеть телепатией и телекинезом (и хотя где-то на глубине концепций это может быть так, люди понимают все слишком буквально). Поэтому физики вообще опасаются упоминать слова «квантовый» и «сознание» в одном предложении.

В 2016 году Эдриан Кент из Кембриджского университета в Великобритании, один из самых уважаемых «квантовых философов», предположил, что сознание может менять поведение квантовых систем тонким, но вполне обнаружимым образом. Кент очень осторожен в своих высказываниях. «Нет никаких убедительных оснований полагать, что квантовая теория - это подходящая теория, из которой можно извлечь теорию сознания, или что проблемы квантовой теории должны как-то пересекаться с проблемой сознания», признает он.

Но добавляет, что совершенно непонятно, как можно вывести описание сознание, основываясь исключительно на доквантовой физике, как описать все его свойства и черты.

Мы не понимаем, как работают мысли

Один особенно волнующий вопрос - как наш сознательный разум может испытывать уникальные ощущения вроде красного цвета или запаха жарки мяса. Если не считать людей с нарушениями зрения, все мы знаем, на что похож красный, но не можем передать это чувство, а в физике нет ничего, что могло бы нам рассказать, на что это похоже.

Чувства вроде этих называют «квалиа». Мы воспринимаем их как единые свойства внешнего мира, но на деле они являются продуктами нашего сознания - и это трудно объяснить. В 1995 году философ Дэвид Чалмерс назвал это «тяжелой проблемой» сознания.

«Любая мысленная цепочка о связи сознания с физикой приводит к серьезным проблемам», говорит Кент.

Это побудило его предположить, что «мы могли бы добиться некоторого прогресса в понимании проблемы эволюции сознания, если бы допустили (хотя бы просто допустили), что сознание меняет квантовые вероятности».

Другими словами, мозг может действительно влиять на результаты измерений.

С этой точки зрения, он не определяет, «что является реальным». Но он может влиять на вероятность того, что каждая из возможных реальностей, навязанных квантовой механикой, будет наблюдаться. Этого не может предсказать даже сама квантовая теория. И Кент полагает, что мы могли бы поискать такие проявления экспериментально. Даже смело оценивает шансы найти их.

«Я бы предположил с 15-процентной уверенностью, что сознание вызывает отклонения от квантовой теории; и еще 3-процентной - что мы экспериментально подтвердим это в следующие 50 лет», говорит он.

Если это произойдет, мир уже не будет прежним. А ради такого стоит исследовать.

29.10.2016

Несмотря на звучность и загадочность сегодняшней темы, мы постараемся рассказать, что изучает квантовая физика, простыми словами , какие разделы квантовой физики имеют место быть и зачем нужна квантовая физика в принципе.

Предлагаемый ниже материал доступен для понимания любому .

Прежде чем разглагольствовать о том, что изучает квантовая физика, будет уместно вспомнить, с чего же все начиналось…

К середине XIX века человечество вплотную занялось изучением проблем, решить которые посредством привлечения аппарата классической физики было невозможно.

Ряд явлений казались «странными». Отдельные вопросы вообще не находили ответа.

В 1850-е годы Уильям Гамильтон, полагая, что классическая механика не способна точно описать движение световых лучей, предлагает собственную теорию, вошедшую в историю науки под названием формализм Гамильтона-Якоби, в основе которой лежал постулат о волновой теории света.

В 1885 г., поспорив с приятелем, швейцарский и физик Иоганн Бальмер вывел эмпирически формулу, которая позволяла рассчитать длины волн спектральных линий с очень высокой точностью.

Объяснить причины выявленных закономерностей Бальмер тогда так и не смог.

В 1895 г. Вильгельм Рентген при исследовании катодных лучей открыл излучение, названное им X-лучами (впоследствии переименованными в лучи), характеризовавшееся мощным проникающим характером.

Еще через год – в 1896 году – Анри Беккерель, изучая соли урана, открыл самопроизвольное излучение с аналогичными свойствами. Новое явление было названо радиоактивностью.

В 1899 году была доказана волновая природа рентгеновских лучей.

Фото 1. Родоначальники квантовой физики Макс Планк, Эрвин Шредингер, Нильс Бор

1901-ый год ознаменовался появлением первой планетарной модели атома, предложенной Жаном Перреном. Увы, ученый сам же отказался от этой теории, не найдя ей подтверждения с позиций теории электродинамики.

Спустя два года ученый из Японии Хантаро Нагаока предложил очередную планетарную модель атома, в центре которого должна была находиться положительно заряженная частица, вокруг которой по орбитам вращались бы электроны.

Эта теория, однако, не учитывала излучение, испускаемое электронами, а потому не могла, например, объяснить теорию спектральных линий.

Размышляя над строением атома, в 1904 году Джозеф Томсон впервые интерпретировал понятие валентности с физической точки зрения.

Годом рождения квантовой физики, пожалуй, можно признать 1900-ый, связывая с ним выступление Макса Планка на заседании Немецкого физического .

Именно Планк предложил теорию, объединившую множество доселе разрозненных физических понятий, формул и теорий, включая постоянную Больцмана, увязывающую энергию и температуру, число Авогадро, закон смещения Вина, заряд электрона, закон излучения -Больцмана…

Им же введено в обиход понятие кванта действия (вторая – после постоянной Больцмана – фундаментальная постоянная).

Дальнейшее развитие квантовой физики напрямую связано с именами Хендрика Лоренца, Альберта Эйнштейна, Эрнста Резерфорда, Арнольда Зоммерфельда, Макса Борна, Нильса Бора, Эрвина Шредингера, Луи де Бройля, Вернера Гейзенберга, Вольфганга Паули, Поля Дирака, Энрико Ферми и многих других замечательных ученых, творивших в первой половине XX века.

Ученым удалось с небывалой глубиной познать природу элементарных частиц, изучить взаимодействия частиц и полей, выявить кварковую природу материи, вывести волновую функцию, объяснить фундаментальные понятия дискретности (квантования) и корпускулярно-волнового дуализма.

Квантовая теория как никакая другая приблизила человечество к пониманию фундаментальных законов мироздания, заменила привычные понятия более точными, заставила переосмыслить огромное число физических моделей.

Что изучает квантовая физика?

Квантовая физика описывает свойства материи на уровне микроявлений, исследуя законы движения микрообъектов (квантовых объектов).

Предмет изучения квантовой физики составляют квантовые объекты, обладающие размерами 10 −8 см и меньше. Это:

  • молекулы,
  • атомы,
  • атомные ядра,
  • элементарные частицы.

Главные характеристики микрообъектов — масса покоя и электрический заряд. Масса одного электрона (me) равна 9,1 · 10 −28 г.

Для сравнения – масса мюона равна 207 me, нейтрона – 1839 me, протона 1836 me.

Некоторые частицы вообще не имеют массы покоя (нейтрино, фотон). Их масса составляет 0 me.

Электрический заряд любого микрообъекта кратен величине заряда электрона, равного 1,6 · 10 −19 Кл. Наряду с заряженными существуют нейтральные микрообъекты, заряд которых равен нулю.

Фото 2. Квантовая физика заставила пересмотреть традиционные взгляды на понятия волны, поля и частицы

Электрический заряд сложного микрообъекта равен алгебраической сумме зарядов составляющих его частиц.

К числу свойств микрообъектов относится спин (в дословном переводе с английского — «вращаться»).

Его принято интерпретировать как не зависящий от внешних условий момент импульса квантового объекта.

Спину сложно подобрать адекватный образ в реальном мире. Его нельзя представлять вращающимся волчком из-за его квантовой природы. Классическая физика описать этот объект не способна.

Присутствие спина влияет на поведение микрообъектов.

Наличие спина вносит существенные особенности в поведение объектов микромира, большая часть которых – нестабильных объектов — самопроизвольно распадается, превращаясь в другие квантовые объекты.

Стабильные микрообъекты, к которым относят нейтрино, электроны, фотоны, протоны, а также атомы и молекулы, способны распадаться лишь под воздействием мощной энергии.

Квантовая физика полностью вбирает в себя классическую физику, рассматривая ее своим предельным случаем.

Фактически квантовая физика и является – в широком смысле – современной физикой.

То, что описывает квантовая физика в микромире, воспринять невозможно. Из-за этого многие положения квантовой физики трудно представимы, в отличие от объектов, описываемых классической физикой.

Несмотря на это новые теории позволили изменить наши представления о волнах и частицах, о динамическом и вероятностном описании, о непрерывном и дискретном.

Квантовая физика – это не просто новомодная теория.

Это теория, которая сумела предсказать и объяснить невероятное количество явлений – от процессов, протекающих в атомных ядрах, до макроскопических эффектов в космическом пространстве.

Квантовая физика – в отличие от физики классической – изучает материю на фундаментальном уровне, давая интерпретации явлениям окружающей действительности, которые традиционная физика дать не способна (например, почему атомы сохраняют устойчивость или действительно ли элементарные частицы являются элементарными).

Квантовая теория дает нам возможность описывать мир более точно, нежели это было принято до ее возникновения.

Значение квантовой физики

Теоретические наработки, составляющие сущность квантовой физики, применимы для исследования как невообразимо огромных космических объектов, так и исключительно малых по размерам элементарных частиц.

Квантовая электродинамика погружает нас в мир фотонов и электронов, делая акцент на изучении взаимодействий между ними.

Квантовая теория конденсированных сред углубляет наши познания о сверхтекучих жидкостях, магнетиках, жидких кристаллах, аморфных телах, кристаллах и полимеров.

Фото 3. Квантовая физика дала человечеству гораздо более точное описание окружающего мира

Научные исследования последних десятилетий сосредоточены на изучении кварковой структуры элементарных частиц в рамках самостоятельной ветви квантовой физики – квантовой хромодинамики .

Нерелятивистская квантовая механика (та, что находится за рамками теории относительности Эйнштейна) изучает микроскопические объекты, движущиеся с условно невысокой скоростью (меньше, чем ), свойства молекул и атомов, их строение.

Квантовая оптика занимается научной проработкой фактов, сопряженных с проявлением квантовых свойств света (фотохимических процессов, теплового и вынужденного излучений, фотоэффекта).

Квантовая теория поля является объединяющим разделом, вобравшим в себя идеи теории относительности и квантовой механики.

Научные теории, разработанные в рамках квантовой физики, придали мощный импульс развитию , квантовой электроники, техники, квантовой теории твердого тела, материаловедения, квантовой химии.

Без появления и развития отмеченных отраслей знания было бы невозможно создание , космических кораблей, атомных ледоколов, мобильной связи и многих других полезных изобретений.