Системный анализ кинетики вулканизации. Вулканизация и ее особенности. Научные Нубы — "Кинетический песок"

Технологически процесс вулканизации представляет собой преобразование в резину «сырого» каучука. Как химическая реакция, он предполагает объединение линейных каучуковых макромолекул, легко теряющих стабильность при внешнем воздействии на них, в единую вулканизационную сетку. Она создается в трехмерном пространстве благодаря поперечным химическим связям.

Такая как бы «сшитая» структура наделяет каучук дополнительными прочностными показателями. Улучшаются его твердость и эластичность, морозо- и теплостойкость при снижении показателей растворимости в органических веществах и набухания.

Полученная сетка отличается сложным строением. Она включает не только узлы, соединяющие пары макромолекул, но и те, что объединяют одновременно несколько молекул, а также поперечные химические связи, представляющие собой как бы «мостики» между линейными фрагментами.

Их образование происходит под действием специальных агентов, молекулы которых частично выступают строительным материалом, химически реагируя друг с другом и макромолекулами каучука при высокой температуре.

Свойства материала

От вида примененного реагента во многом зависят эксплуатационные свойства полученной вулканизированной резины и изделий из нее. К таким характеристикам относят устойчивость к пребыванию в агрессивных средах, скорость деформирования при сжатии или повышении температуры, сопротивляемость термоокислительным реакциям.

Возникающие связи необратимо ограничивают подвижность молекул под механическим воздействием, одновременно сохраняя высокую эластичность материала со способностью к пластическим деформациям. Структура и численность этих связей определяется методом вулканизации резины и использованными для нее химическими агентами.

Процесс протекает не монотонно, и отдельные показатели вулканизируемой смеси в своем изменении достигают своего минимума и максимума в разное время. Наиболее подходящее соотношение физико-механических характеристик получаемого эластомера называется оптимумом.

Вулканизируемый состав, помимо каучука и химических агентов, включает ряд дополнительных веществ, способствующих производству резин с заданными эксплуатационными свойствами. По назначению их делят на ускорители (активаторы), наполнители, мягчители (пластификаторы) и противостарители (антиокислители). Ускорители (чаще всего это оксид цинка) облегчают химическое взаимодействие всех ингредиентов резиновой смеси, способствуют сокращению расхода сырья, времени на его переработку, улучшают свойства вулканизаторов.

Наполнители, такие как мел, каолин, сажа, повышают механическую прочность, сопротивление износу, истиранию и другие физические характеристики эластомера. Пополняя объем исходного сырья, они тем самым уменьшают расход каучука и понижают себестоимость получаемого продукта. Мягчители добавляют для повышения технологичности обработки резиновых смесей, снижения их вязкости и увеличения объема наполнителей.

Также пластификаторы способны повышать динамическую выносливость эластомеров, стойкость к истиранию. Стабилизирующие процесс антиокислители вводятся в состав смеси, чтобы предупредить «старение» каучука. Разные комбинации этих веществ применяют при разработке специальных рецептур сырой резины для прогнозирования и корректировки процесса вулканизации.

Виды вулканизации

Чаще всего общеупотребимые каучуки (бутадиен-стирольный, бутадиеновый и натуральный) вулканизируют в сочетании с серой, нагревая смесь до 140-160°С. Этот процесс называется серной вулканизацией. В образовании межмолекулярных поперечных связей участвуют атомы серы. При добавлении в смесь с каучуком до 5% серы производят мягкий вулканизат, используемый для изготовления автомобильных камер, покрышек, резиновых трубок, мячей и т.п.

Когда присоединяется более 30% серы, то получается довольно жесткий, малоэластичный эбонит. В качестве ускорителей в этом процессе используют тиурам, каптакс и др., полноту действия которых обеспечивает добавление активаторов, состоящих из окислов металлов, как правило, цинка.

Еще возможна радиационная вулканизация. Ее проводят посредством ионизирующей радиации, применяя потоки электронов, излучаемых радиоактивным кобальтом. Такой процесс без использования серы способствует получению эластомеров, наделенных особой стойкостью к химическому и термическому воздействию. Для производства специальных видов резин добавляют органические перекиси, синтетические смолы и другие соединения при тех же параметрах процесса, что и в случае добавление серы.

В промышленных масштабах вулканизируемый состав, помещенный в форму, нагревают при повышенном давлении. Для этого формы помещают между нагретыми плитами гидропресса. При изготовлении неформовых изделий смесь засыпают в автоклавы, котлы или индивидуальные вулканизаторы. Нагревание резины для вулканизации в этом оборудовании проводится при помощи воздуха, пара, нагретой воды или высокочастотного электрического тока.

Крупнейшими потребителями резинотехнической продукции на протяжении многих лет остаются предприятия автомобильного и сельскохозяйственного машиностроения. Степень насыщенности их продукции изделиями из резины служит показателем высокой надежности и комфорта. Кроме того, детали из эластомеров часто используют при производстве монтажа сантехники, изготовлении обуви, канцелярских и детских товаров.

Основные способы вулканизации каучуков . Для проведения основного химического процесса резиновой технологии – вулканизации – применяются вулканизующие агенты. Химизм процесса вулканизации заключается в образовании пространственной сетки, включающей линейные или разветвленные макромолекулы каучука и поперечные связи. Технологически вулканизация заключается в обработке резиновой смеси при температурах от нормальной до 220˚С под давлением и реже без него.

В большинстве случаев промышленная вулканизация проводится вулканизующими системами, включающими вулканизующий агент, ускорители и активаторы вулканизации и способствующими более эффективному протеканию процессов образования пространственной сетки.

Химическое взаимодействие между каучуком и вулканизующим агентом определяется химической активностью каучука, т.е. степенью ненасыщенности его цепей, наличием функциональных групп.

Химическая активность ненасыщенных каучуков обусловлена наличием в основной цепи двойных связей и повышенной подвижностью атомов водорода в -метиленовых группах, соседних с двойной связью. Поэтому ненасыщенные каучуки можно вулканизовать всеми соединениями, взаимодействующими с двойной связью и соседними с ней группами.

Основным вулканизующим агентом для ненасыщенных каучуков является сера, которая обычно используется в виде вулканизующей системы совместно с ускорителями и их активаторами. Кроме серы можно использовать органические и неорганические пероксиды, алкилфенолформальдегидные смолы (АФФС), диазосоединения, полигалоидные соединения.

Химическая активность насыщенных каучуков существенно ниже активности ненасыщенных, поэтому для вулканизации нужно использовать вещества с высокой реакционной способностью, например различные пероксиды.

Вулканизация ненасыщенных и насыщенных каучуков может проводиться не только в присутствии химических вулканизующих агентов, но и под влиянием физических воздействий, инициирующих химические превращения. Это излучения высоких энергий (радиационная вулканизация), ультрафиолетовое излучение (фотовулканизация), длительное воздействие высоких температур (термовулканизация), действие ударных волн и некоторых других источников.

Каучуки, имеющие функциональные группы, можно вулканизовать по этим группам с помощью веществ, взаимодействующих с функциональными группами с образованием поперечной связи.

Основные закономерности процесса вулканизации. Независимо от типа каучука и применяемой вулканизующей системы в процессе вулканизации происходят некоторые характерные изменения свойств материала:

    Резко уменьшается пластичность резиновой смеси, появляется прочность и эластичность вулканизатов. Так, прочность сырой резиновой смеси на основе НК не превышает 1,5 МПа, а прочность вулканизованного материала - не менее 25 МПа.

    Существенно снижается химическая активность каучука: у ненасыщенных каучуков уменьшается количество двойных связей, у насыщенных каучуков и каучуков с функциональными группами – число активных центров. За счет этого повышается устойчивость вулканизата к окислительным и другим агрессивным воздействиям.

    Увеличивается устойчивость вулканизованного материала к действию пониженных и повышенных температур. Так, НК затвердевает при 0ºС и становится липким при +100ºС, а вулканизат сохраняет прочность и эластичность в температурном интервале от –20 до +100ºС.

Такой характер изменения свойств материала при вулканизации однозначно свидетельствует о протекании процессов структурирования, заканчивающихся формированием трехмерной пространственной сетки. Для того чтобы вулканизат сохранил эластичность, поперечные связи должны быть достаточно редкими. Так, в случае НК термодинамическая гибкость цепи сохраняется, если одна поперечная связь приходится на 600 атомов углерода основной цепи.

Процесс вулканизации характеризуется также некоторыми общими закономерностями изменения свойств в зависимости от времени вулканизации при постоянной температуре.

Поскольку наиболее существенно изменяются вязкостные свойства смесей, для исследования кинетики вулканизации используют сдвиговые ротационные вискозиметры, в частности реометры Монсанто. Эти приборы позволяют исследовать процесс вулканизации при температурах от 100 до 200ºС в течение 12 - 360 мин с различными сдвиговыми усилиями. Самописец прибора выписывает зависимость крутящего момента от времени вулканизации при постоянной температуре, т.е. кинетическую кривую вулканизации, имеющую S-образную форму и несколько участков, соответствующих стадиям процесса (рис. 3).

Первая стадия вулканизации называется индукционным периодом, стадией подвулканизации или стадией преждевременной вулканизации. На этой стадии резиновая смесь должна сохранять текучесть и хорошо заполнять всю форму, поэтому ее свойства характеризуются минимальным моментом сдвига М мин (минимальная вязкость) и временем t s , в течение которого сдвиговый момент увеличивается на 2 единицы по сравнению с минимальным.

Продолжительность индукционного периода зависит от активности вулканизационной системы. Выбор вулканизующей системы с тем или иным значением t s определяется массой изделия. При вулканизации происходит сначала прогрев материала до температуры вулканизации, и вследствие низкой теплопроводности каучука время прогрева пропорционально массе изделия. По этой причине для вулканизации изделий большой массы должны выбираться вулканизующие системы, которые обеспечивают достаточно длительный индукционный период, а для изделий с малой массой - наоборот.

Вторая стадия называется главным периодом вулканизации. По завершении индукционного периода в массе резиновой смеси накапливаются активные частицы, вызывающие быстрое структурирование и соответственно нарастание крутящего момента до некоторого максимального значения М макс. Однако завершением второй стадии считается не время достижения М макс, а время t 90 , соответствующее М 90 . Этот момент определяется по формуле

М 90 =0,9 М + М мин,

где М – разность крутящих моментов (М=М макс – М мин).

Время t 90 – это оптимум вулканизации, величина которого зависит от активности вулканизующей системы. Угол наклона кривой в главном периоде характеризует скорость вулканизации.

Третья стадия процесса называется стадией перевулканизации, которой в большинстве случаев на кинетической кривой соответствует горизонтальный участок с постоянными свойствами. Эта зона называется плато вулканизации. Чем шире плато, тем устойчивее смесь к перевулканизации.

Ширина плато и дальнейший ход кривой в основном зависят от химической природы каучука. В случае ненасыщенных линейных каучуков, таких как НК и СКИ-3, плато неширокое и затем происходит ухудшение свойств, т.е. спад кривой (рис. 3, кривая а ). Процесс ухудшения свойств на стадии перевулканизации называется реверсией . Причиной реверсии является деструкция не только основных цепей, но и образовавшихся поперечных связей под действием высокой температуры.

В случае насыщенных каучуков и ненасыщенных каучуков с разветвленной структурой (значительное количество двойных связей в боковых 1,2-звеньях) в зоне перевулканизации свойства изменяются незначительно, а в ряде случаев даже улучшаются (рис. 3, кривые б и в ), поскольку термоокисление двойных связей боковых звеньев сопровождается дополнительным структурированием.

Поведение резиновых смесей на стадии перевулканизации важно в производстве массивных изделий, особенно автомобильных покрышек, поскольку за счет реверсии может произойти перевулканизация наружных слоев при недовулканизации внутренних. В этом случае требуются вулканизующие системы, которые обеспечивали бы продолжительный индукционный период для равномерного прогрева покрышки, высокую скорость в главном периоде и широкое плато вулканизации на стадии перевулканизации.

3.2. Серные вулканизующие системы для ненасыщенных каучуков

Свойства серы как вулканизующего агента. Процесс вулканизации натурального каучука серой был открыт в 1839 г. Ч. Гудьиром и независимо в 1843 г. Г. Генкокком.

Для вулканизации применяют природную молотую серу. Элементная сера имеет несколько кристаллических модификаций, из которых только -модификация частично растворима в каучуке. Именно эта модификация, имеющая температуру плавления 112,7 ºС, и используется при вулканизации. Молекулы -формы представляют собой восьмичленный цикл S 8 со средней энергией активации разрыва кольца Е акт = 247 кДж/моль.

Это достаточно высокая энергия, и расщепление кольца серы происходит только при температуре 143ºС и выше. При температуре ниже 150ºС происходит гетеролитический или ионный распад кольца серы с образованием соответствующего бииона серы, а при 150ºС и выше - гомолитический (радикальный) распад кольца S с образованием бирадикалов серы:

t150ºС S 8 →S + – S 6 – S – → S 8 +–

t150ºС S 8 →Sֹ–S 6 –Sֹ→S 8 ֹֹ.

Бирадикалы S 8 ·· легко распадаются на более мелкие фрагменты: S 8 ֹֹ→S х ֹֹ + S 8-х ֹֹ.

Образовавшиеся биионы и бирадикалы серы затем взаимодействуют с макромолекулами каучука либо по двойной связи, либо по месту -метиленового углеродного атома.

Кольцо серы может распадаться и при температуре ниже 143ºС, если в системе имеются какие-то активные частицы (катионы, анионы, свободные радикалы). Активация происходит по схеме:

S 8 + A + →A – S – S 6 – S +

S 8 + B – → B – S – S 6 –

S 8 + Rֹ→R – S – S 6 – Sֹ.

Такие активные частицы присутствуют в резиновой смеси, когда используются вулканизующие системы с ускорителями вулканизации и их активаторами.

Для превращения мягкого пластичного каучука в твердую эластичную резину достаточно небольшого количества серы - 0,10,15% мас. Однако реальные дозировки серы составляют от 12,5 до 35 мас.ч. на 100 мас.ч. каучука.

Сера имеет ограниченную растворимость в каучуке, поэтому от дозировки серы зависит, в каком виде она распределена в резиновой смеси. При реальных дозировках сера находится в виде расплавленных капелек, с поверхности которых молекулы серы диффундируют в массу каучука.

Приготовление резиновой смеси проводят при повышенной температуре (100-140ºС), что повышает растворимость серы в каучуке. Поэтому при охлаждении смеси, особенно в случаях ее высоких дозировок, начинается диффузия свободной серы на поверхность резиновой смеси с образованием тонкой пленки или налета серы. Этот процесс в технологии называется выцветанием или выпотеванием. Выцветание редко снижает клейкость заготовок, и поэтому для освежения поверхности заготовок перед сборкой их обрабатывают бензином. Это ухудшает условия труда сборщиков и повышает пожаро- и взрывоопасность производства.

Особенно остро проблема выцветания стоит в производстве металлокордных шин. В этом случае для повышения прочности связи между металлом и резиной дозировку S повышают до 5 мас.ч. Для исключения выцветания в таких рецептурах следует применять особую модификацию - так называемую полимерную серу. Это -форма, которая образуется при нагревании -формы до 170ºС. При этой температуре происходит резкий скачок вязкости расплава и образуется полимерная сера S n , где n свыше 1000. В мировой практике используются различные модификации полимерной серы, известные под маркой «кристекс».

Теории серной вулканизации. Для объяснения процесса серной вулканизации выдвигались химические и физические теории. В 1902 г. Вебер выдвинул первую химическую теорию вулканизации, элементы которой сохранились до сих пор. Экстрагируя продукт взаимодействия НК с серой, Вебер установил, что часть введенной серы не экстрагируется. Эта часть была им названа связанной, а выделившаяся - свободной серой. Сумма количества связанной и свободной серы равнялась общему количеству серы, введенному в каучук:S общ =S своб +S связ. Вебер также ввел понятие коэффициента вулканизации как отношение связанной серы к количеству каучука в составе резиновой смеси (А): К вулк =S связ / А.

Веберу удалось выделить полисульфид (С 5 H 8 S) n как продукт внутримолекулярного присоединения серы по двойным связям изопреновых звеньев. Поэтому теория Вебера не могла объяснить повышения прочности в результате вулканизации.

В 1910 г. Освальдом была выдвинута физическая теория вулканизации, объяснявшая эффект вулканизации физическим адсорбционным взаимодействием между каучуком и серой. По этой теории в резиновой смеси образуются комплексы каучук - сера, которые взаимодействуют друг с другом также за счет адсорбционных сил, что приводит к повышению прочности материала. Однако адсорбционно связанная сера должна полностью экстрагироваться из вулканизата, чего не наблюдалось в реальных условиях, и химическая теория вулканизации стала преобладать во всех дальнейших исследованиях.

Основными доказательствами химической теории (мостичной теории) являются следующие положения:

Серой вулканизуются только ненасыщенные каучуки;

Сера взаимодействует с молекулами ненасыщенных каучуков с образованием ковалентных поперечных связей (мостиков) различного типа, т.е. с образованием связанной серы, количество которой пропорционально ненасыщенности каучука;

Процесс вулканизации сопровождается тепловым эффектом, пропорциональным количеству присоединенной серы;

Вулканизация имеет температурный коэффициент, равный примерно 2, т.е. близкий к температурному коэффициенту химической реакции вообще.

Повышение прочности в результате серной вулканизации происходит за счет структурирования системы, в результате которого формируется трехмерная пространственная сетка. Существующие серные вулканизационные системы позволяют направленно синтезировать практически любой тип поперечной связи, изменять скорость вулканизации, конечную структуру вулканизата. Поэтому сера до сих пор является самым популярным сшивающим агентом для ненасыщенных каучуков.

Определение кинетики вулканизации имеет большое значение в производстве резиновых изделий. Вулканизуемость резиновых смесей неидентична их способности к подвулканизации, и для ее оценки необходимы методы, позволяющие определять не только лишь начало (по уменьшению текучести), да и оптимум вулканизации по достижении максимального значения какого-либо показателя, например динамического модуля.39

Обычным методом определения вулканизуемости является изготовление нескольких образцов из одной резиновой смеси, различающихся продолжительностью термообработки, и испытание их, например иа разрывной машине. По окончании испытания строят кривую кинетики вулканизации. Этот метод весьма трудоемок и требует значительной затраты времени.39

Испытания на реометре не дают ответа на все вопросы, и для большей точности результаты определения плотности, предела прочности при растяжении и твёрдости должны быть обработаны статистическими методами и перекрёстно сверены с кривыми кинетики вулканизации . В конце 60-х гг. в связи с разработкой контроля приготовления смесей при помощи реометров началось использование более крупных закрытых резиносмесителей и значительно сократились циклы смешения на некоторых производствах стало возможным выпускать тысячи тонн заправок резиновых смесей в день.

Значительные усовершенствования также отмечались в скорости перемещения материала по заводу. Эти достижения привели к отставанию техники проведения испытаний. Завод, приготовляющий ежедневно 2 тысячи заправок смесей, требует, чтобы бьшо проведено испытание примерно для 00 контрольных параметров (табл. 17.1), предполагая при480

Определение кинетики вулканизации резиновых смесей

При проектировании тепловых режимов вулканизации моделируются одновременно протекающие и взаимосвязанные тепловой (динамическое изменение температурного поля по профилю изделия) и кинетический (формирование степени вулканизации резины) процессы. В качестве параметра для определения степени вулканизации может быть выбран любой физико-механический показатель, для которого имеется математическое описание кинетики неизотермической вулканизации. Однако в силу различий кинетики вулканизации по каждому417


В первой части главы 4 описываются существующие методы оценки эффекта вулканизующего действия переменных по времени температур. Приближенность упрощающих допущений, положенных в основу принятой в промышленности оценки, становится очевидной в свете рассмотрения общих закономерностей изменения свойств резин при вулканизации (кинетики вулканизации по различным показателям свойств, определенных лабораторными методами).

Формирование свойств резин при вулканизации многослойных изделий протекает иначе, чем тонких пластин, используемых для лабораторных механических испытаний из однородного материала. При наличии материалов различной деформируемости большое влияние оказывает сложнонапряженное состояние этих материалов. Вторая часть главы 4 посвящена вопросам механического поведения материалов многослойного изделия в вулканизационных пресс-формах, также способам оценки достигаемых степеней вулканизации резин в изделиях.7
Следует также отметить, что при определении кинетики вулканизации по данному свойству небезразличен режим испытания. Например, стандартная резина из натурального каучука при 100° С имеет иные, чем при 20° С, оптимум, плато и распределение показателей сопротивления разрыву зависимо от степени вулканизации .

Как надо из рассмотрения зависимости основных свойств резины от степени ее поперечного сшивания, проведенного в предыдущем разделе, оценку кинетики и степени вулканизации можно производить различными способами. Применяемые методы делятся на три группы 1) химические методы (определение путем химического анализа резины количества прореагировавшего и непрореагировавшего агента вулканизации) 2) физико-химические методы (определение тепловых эффектов реакции, инфракрасных спектров, хроматографирование, люминесцентный анализ и др.) 3) механические методы (определение механических свойств, в том числе и методами, специально разработанными для определения кинетики вулканизации).

Радиоактивные изотопы (меченые атомы) легко обнаружить, измеряя радиоактивность продукта, в каком они содержатся. Для исследования кинетики вулканизации после определенного времени реагирования каучука с радиоактивной серой (агентом вулканизации) продукты реакции подвергаются холодной непрерывной экстракции бензолом в течение 25 дней. Непрореагировавший агент вулканизации удаляется с экстрактом, а концентрация оставшегося связанного агента определяется по радиоактивности конечного продукта реакции.

Вторая группа методов служит для определения собственно кинетики вулканизации.

ГОСТ 35-67. Резина. Метод определения кинетики вулканизации резиновых смесей .

Развитие в последние годы новых способов полимеризации способствовало созданию типов каучуков, обладающих более совершенными свойствами. Изменения свойств в главном обусловлены различиями в строении молекул каучуков, а это, естественно, повышает роль структурного анализа. Спектроскопическое определение 1,2-, цис-, А- и гране-1,4-структур в синтетических каучуках имеет такое же практическое и теоретическое значение, как и анализ физико-химических и эксплуатационных характеристик полимера. Результаты количественного анализа дают возможность изучить 1) влияние катализатора и условий полимеризации на структуру каучука 2) структуру неизвестных каучуков (идентификация) 3) изменение микроструктуры при вулканизации (изомеризация) и кинетику вулканизации 4) процессы, происходящие при окислительной и термической деструкции каучука (структурные изменения при сушке каучука, старении) 5) влияние стабилизаторов на устойчивость каучукового молекулярного каркаса и процессы, происходящие при прививке и пластификации каучука 6) соотношение мономеров в каучуковых сополимерах и в связи с этим дать качественный вывод о распределении блоков по длинам в сополимерах бутадиена со стиролом (разделение блок- и статистических сополимеров).357

При выборе органических ускорителей вулканизации каучука для промыщленного их использования необходимо принимать во внимание следующее. Ускоритель выбирается для определенного типа каучука, потому что зависимо от типа и строения каучука наблюдается различное влияние ускорителя на кинетику вулканизации.16

Для характеристики кинетики вулканизации на всех стадиях процесса целесообразно наблюдать за изменением эластических свойств смеси. В качестве одного из показателей эластических свойств при испытаниях, осуществляемых в стационарном режиме нагружения, может быть использован динамический модуль.

Подробно об этом показателе и о методах его определения будет сказано в разделе 1 главы IV, посвященном динамическим свойствам резин. Применительно к задаче контроля резиновых смесей по кинетике их вулканизации определение динамического модуля сводится к наблюдению за механическим поведением резиновой смеси, подвергаемой деформации многократного сдвига при повышенной температуре.

Вулканизация сопровождается ростом динамического модуля. Завершение процесса определяется по прекращению этого роста. Таким макаром, непрерывное наблюдение за изменением динамического модуля резиновой смеси при температуре вулканизации может служить основой определения так называемого оптимума вулканизации (по модулю), являющегося одной из важнейших технологических характеристик каждой резиновой смеси.37

В табл. 4 приведены значения температурного коэффициента скорости вулканизации натурального каучука, определенные по скорости связывания серы. Температурный коэффициент скорости вулканизации может быть вычислен также по кинетическим кривым изменения физико-механических свойств каучука при вулканизации при разных температурах, например по величине модуля. Значения коэффициентов, вычисленных по кинетике изменения модуля, приведены в той же таблице.76

Способ определения степени вулканизации (Т) на лимитирующем процесс вулканизации участке изделия. В данном случае различают методы и устройства оптимального управления режимами вулканизации изделий, кинетика неизотермической вулканизации в каких определяется 419

Место определения (Т). Известны методы и устройства, позволяющие определить кинетику неизотермической вулканизации 419

Полученные при помощи описанных методов кинетические кривые используют для расчета таких параметров, как константы скорости, температурные коэффициенты и энергия активации процесса в соответствии с уравнениями формальной кинетики химических реакций. Долгое время считали, что большинство кинетических кривых описывается уравнением первого порядка. Было найдено, что температурный коэффициент процесса равен в среднем 2, а энергия активации меняется от 80 до кДж/моль зависимо от агента вулканизации и молекулярного строения каучука. Однако более точное определение кинетических кривых и их формально-кинетический анализ, проведенный В. Шееле 52, показал, что в почти всех случаях порядок реакции меньше 1 и равен 0,6-0,8, а реакции вулканизации являются сложными и многостадийными.

Кюрометрмодели VIIфирмы Уоллес» (Великобритания) определяет кинетику вулканизации резиновых смесей в изотермических условиях. Образец помещают между плитами, одна из которых смещается на определенный угол. Преимущество такой конструкции заключается в отсутствии пористости в образце, поскольку он находится под давлением, также возможности использования образцов меньшего размера, что сокращает время прогрева.499

Изучение кинетики вулканизации резиновых смесей имеет не только теоретический интерес, но и практическое значение для оценки поведения резиновых смесей при переработке и вулканизации. Для определения режимов технологических процессов в производстве должны быть известны показатели вулканизуе-мости резиновых смесей, т. е. их склонность к преждевременной вулканизации - начало вулканизации и ее скорость (для переработки), а собственно для процесса вулканизации - кроме приведенных показателей - оптимум и плато вулканизации, область реверсии.

Книга составлена на основе лекций, прочитанных для инжене-ров-резинщиков США в Акронском университете ведущими американскими исследователями. Целью этих лекций явилось систематическое изложение имеющихся сведений о теоретических основах и технологии вулканизации в доступном и достаточно полном виде.

В соответствии с этим в начале книги излагается история вопроса и характеристика изменения основных свойств резины, происходящих при вулканизации. Далее при изложении кинетики вулканизации критически рассмотрены химические и физические методы определения скорости, степени и температурного коэффициента вулканизации. Обсуждено влияние на скорость вулканизации размеров заготовки и теплопроводности резиновых смесей.8

Приборы для определения кинетики вулканизации обычно работают либо в режиме заданного амплитудного значения перемещения (вулкаметры, вискюрометры или реометры), либо в режиме заданного амплитудного значения нагрузки (кюрометры, СЕРАН). Соответственно измеряются амплитудные значения нагрузки или перемещения.

Поскольку для лабораторных испытаний обычно применяют образцы 25, заготовленные из пластин толщиной 0,5-2,0 мм, которые вулканизуются практически в изотермических условиях (Г == = onst), то кинетика вулканизации для них измеряется при постоянной температуре вулканизации. На кинетической кривой определяются продолжительность индукционного периода, время начала плато вулканизации, или оптимума, величина плато и другие характерные времена.

Каждому из них отвечают определенные эффекты вулканизации, согласно (4.32). Эквивалентными временами вулканизации будут считаться такие времена которые при температуре 4кв = onst приведут к тем же эффектам, что и при переменных температурах. Таким образом

Если кинетика вулканизации при Г = onst передается уравнением (4.20а), в котором т -время собственно реакции, можно предложить следующий метод определения кинетики неизотермической реакции вулканизации.

Оперативный контроль процесса вулканизации позволяю осуществить специальные приборы для определения кинетики вулка-1 низации — вулкаметры (кюрометры, реометры), непрерывно фиксирующие амплитуды сдвиговой нагрузки (в режиме заданной амплитуды гармонического сдвига) или сдвиговой деформации (в режиме заданной амплитуды сдвиговой нагрузки). Наиболее широко используются приборы вибрационного типа, в частности реометры 100 и 100S фирмы Монсанто, обеспечивающие автоматическое проведение испытаний с получением непрерывной диаграммы изменения свойств смеси в процессе вулканизации согласно ASTM 4-79, МС ISO 3417-77, ГОСТ 35-84.492

Выбор режима отверждения или вулканизации обычно проводят путем исследования кинетики изменения какого-либо свойства отверждаемой системы электрического сопротивления и тангенса угла диэлектрических потерь, прочности, ползучести, модуля упругости при различных видах напряженного состояния, вязкости, твердости, теплостойкости, теплопроводности, набухания, динамических механических характеристик, показателя преломления и целого ряда других параметров, -. Широкое распространение нашли также методы ДТА и ТГА, химического и термомеханического анализа, диэлектрической и механической релаксации, термометрического анализа и дифференциальной сканирующей калориметрии, -.

Все эти методы условно можно разбить на две группы методы, позволяющие контролировать скорость и глубину процесса отверждения по изменению концентрации реакционноспособных функциональных групп, и методы, позволяющие контролировать изменение какого-либо свойства системы и установить его предельное значение. Методы второй группы имеют тот общий недостаток, что то или иное свойство отверждающейся системы ярко проявляется лишь на определенных стадиях процесса так, вязкость отверждающейся системы можно измерять лишь до точки гелеобразования, тогда как большинство физико-механических свойств начинает отчетливо проявляться лишь после точки гелеобразования. С другой стороны, эти свойства сильно зависят от температуры измерения, и если осуществлять непрерывный контроль какого-либо свойства в ходе процесса, когда необходимо для достижения полноты реакции менять и температуру в ходе реакции или реакция развивается существенно неизотермично, то интерпретация результатов измерений кинетики изменения свойства в таком процессе становится уже весьма сложной.37

Исследование кинетики сополимеризации этилена с пропиленом на системе VO I3-А12(С2Н5)зС1д показало, что модифицирование ее тетрагидрофураном позволяет в определенных условиях повысить интегральный выход сополимера. Этот эффект обусловлен тем, что модификатор, изменяя соотношение между скоростями роста и обрыва цепи, способствует образованию сополимеров с более высоким молекулярным весом. Эти же соединения используются в ряде случаев при сополимеризации этилена и пропилена с дициклопентадиеном, норборненом и другими циклодиенами, . Присутствие элект-ронодонорных соединений в сфере реакции при получении ненасыщенных тройных сополимеров предотвращает протекание последующих более медленных реакций сшивки макромолекул и позволяет получить сополимеры, обладающие хорошей способностью к вулканизации.45

Кинетика присоединения серы. Кинетические кривые Вебера, как видно из рис. , имеют вид ломаных линий.

Вебер объяснял такой вид кривых тем, что в отдельные моменты вулканизации образуются различные стехиометрические соединения каучука с серой - сульфиды состава КаЗ, КаЗг. КаЗз и т. д. Каждый из этих сульфидов образуется со свойственной ему скоростью, причем образование сульфида с определенны.м содержанием серы не начинается до тех пор, пока не закончится предыдущая стадия образования сульфида с меньшим числом атомов серы.

Однако позднейшие и более тщательные исследования Спенс и Юнга привели к более простым кинетическим кривым, изображенным на рис. и. Как видно из этих302

Результаты определения структурных параметров вулканизационной сетки методом золь-гель анализа, в частности данные кинетики изменения обшего числа цепей сетки (рис. 6А), показывают, что важнейшей особенностью дитиодиморфолиновых вулканизатов является значительно меньшая реверсия и, как следствие этого, меньшее снижение прочностных свойств вулканизатов с повышением температуры вулканизации. На рис. 6Б показана кинетика изменения сопротивления разрыву смесей при309

Научные Нубы — "Кинетический песок"

Вот те раз, слушай музыку у нас , блин давай к нам у нас есть все, что тебе необходимо друг, подружка! Новинки песен, концерты и клипы, популярные релизы, соберись и вперед на сайт muzoic.com. Только у нас столько музыки , что голова кругом, что же слушать!

Рубрики

Выберите рубрику 1. ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА НЕФТИ, ПРИРОДНОГО ГАЗА 3. ОСНОВЫ РАЗРАБОТКИ НЕФТЯНЫХ МЕСТОРОЖДЕНИЙ И ЭКСПЛУАТА 3.1. Фонтанная эксплуатация нефтяных скважин 3.4. Эксплуатация скважин погружными электроцентробежны 3.6. Понятие о разработке нефтяных и газовых скважин 7. МЕТОДЫ ВОЗДЕЙСТВИЯ НА ПРИЗАБОЙНУЮ ЗОНУ ПЛАСТА ОСНОВНЫЕ УЗЛЫ ИСПЫТАТЕЛЯ ПЛАСТОВ ВИНТОВЫЕ ЗАБОЙНЫЕ ДВИГАТЕЛИ АВАРИЙНЫЕ И ОСОБЫЕ РЕЖИМЫ РАБОТЫ ЭЛЕКТРООБОРУДОВАНИЯ АГРЕГАТЫ ДЛЯ РЕМОНТА И БУРЕНИЯ СКВАЖИН АНАЛИЗ ПРИЧИН МАЛОДЕБИТНОСТИ СКВАЖИН АНАЛИЗ ТЕХНОЛОГИЙ КАПИТАЛЬНЫХ РЕМОНТОВ СКВАЖИН Арматура устьевая АСФАЛЬТОСМОЛО-ПАРАФИНОВЫЕ ОТЛОЖЕНИЯ Без рубрики БЕЗДЫМНОЕ СЖИГАНИЕ ГАЗА БЕСШТАНГОВЫЕ СКВАЖИННЫЕ НАСОСНЫЕ УСТАНОВКИ блогун БЛОКИ ЦИРКУЛЯЦИОННЫХ СИСТЕМ. борьба с гидратами БОРЬБА С ОТЛОЖЕНИЕМ ПАРАФИНА В ПОДЪЕМНЫХ ТРУБАХ бурение Бурение боковых стволов БУРЕНИЕ НАКЛОННО НАПРАВЛЕННЫХ И ГОРИЗОНТАЛЬНЫХ СКВАЖИН Бурение скважин БУРИЛЬНАЯ КОЛОННА БУРОВЫЕ АВТОМАТИЧЕСКИЕ СТАЦИОНАРНЫЕ КЛЮЧИ БУРОВЫЕ АГРЕГАТЫ И УСТАНОВКИ ДЛЯ ГЕОЛОГО-РАЗВЕДОЧНОГО БУРЕНИЯ БУРОВЫЕ ВЫШКИ БУРОВЫЕ НАСОСЫ БУРОВЫЕ НАСОСЫ БУРОВЫЕ РУКАВА БУРОВЫЕ УСТАНОВКИ В МНОГОЛЕТНЕМЕРЗЛЫХ ПОРОДАХ (ММП) ВЕНТИЛИ. ВИДЫ НЕОДНОРОДНОСТЕЙ СТРОЕНИЯ НЕФТЯНЫХ ЗАЛЕЖЕЙ Виды скважин ВИНТОВЫЕ ПОГРУЖНЫЕ НАСОСЫ С ПРИВОДОМ НА УСТЬЕ ВЛАГОСОДЕРЖАНИЕ И ГИДРАТЫ ПРИРОДНЫХ ГАЗОВ СОСТАВ ГИДРАТ Влияние различных факторов на характеристики ВЗД ВОПРОСЫ ОПТИМИЗАЦИИ РАБОТЫ СИСТЕМЫ ПЛАСТ — УЭЦН ВЫБОР ОБОРУДОВАНИЯ И РЕЖИМА РАБОТЫ УЭЦН ВЫБОР СТАНКА-КАЧАЛКИ Газлифтная установка ЛН Газлифтная эксплуатация нефтяных скважин Газлифтный способ добычи нефти ГАЗЫ НЕФТЯНЫХ И ГАЗОВЫХ МЕСТОРОЖДЕНИЙ И ИХ СВОЙСТВА ГИДРАТООБРАЗОВАНИЕ В ГАЗОКОНДЕНСАТНЫХ СКВАЖИНАХ ГИДРАТООБРАЗОВАНИЕ В СИСТЕМЕ СБОРА НЕФТИ гидрозащита погружного электродвигателя ГИДРОКЛЮЧ ГКШ-1500МТ гидропоршневой насос Глава 8. СРЕДСТВА И МЕТОДЫ ГРАДУИРОВКИ И ПОВЕРКИ РАСХОДОИЗМЕРИТЕЛЬНЫХ СИСТЕМ ГЛУБИННЫЕ НАСОСЫ Горизонтальное бурение ГОРНО-ГЕОЛОГИЧЕСКИЕ УСЛОВИЯ БУРЕНИЯ НЕФТЯНЫХ И ГАЗОВЫХ СКВАЖИН ГРАНУЛОМЕТРИЧЕСКИЙ (МЕХАНИЧЕСКИЙ) СОСТАВ ПОРОД ДАЛЬНИЙ ТРАНСПОРТ НЕФТИ И ГАЗА ДЕФОРМАЦИОННЫЕ МАНОМЕТРЫ Диафрагменные электронасосы ДИЗЕЛЬ-ГИДРАВЛИЧЕСКИЙ АГРЕГАТ САТ-450 ДИЗЕЛЬНЫЕ И ДИЗЕЛЬ-ГИДРАВЛИЧЕСКИЕ АГРЕГАТЫ ДИНАМОМЕТРИРОВАНИЕ УСТАНОВОК ДНУ С ЛМП КОНСТРУКЦИИ ОАО «ОРЕНБУРГНЕФТЬ» добыча нефти добыча нефти в осложненых условиях ДОБЫЧА НЕФТИ С ПРИМЕНЕНИЕМ ШСНУ ЖИДКОСТНЫЕ МАНОМЕТРЫ ЗАБОЙНЫЕ ДВИГАТЕЛИ Закачка растворов кислот в скважину ЗАПОРНАЯ АРМАТУРА. ЗАЩИТа НЕФТЕПРОМЫСЛОВОГО ОБОРУДОВАНИЯ ОТ КОРРОЗИИ ЗАЩИТА ОТ КОРРОЗИИ НЕФТЕПРОМЫСЛОВОГО ОБОРУДОВАНИЯ ИЗМЕНЕНИЕ КУРСА СТВОЛА СКВАЖИНЫ измерение давления, расхода, жидкости, газа и пара ИЗМЕРЕНИЕ КОЛИЧЕСТВА ЖИДКОСТЕЙ И ГАЗОВ ИЗМЕРЕНИЕ РАСХОДА ЖИДКОСТЕЙ, ГАЗОВ И ПАРОВ ИЗМЕРЕНИЕ УРОВНЯ ЖИДКОСТЕЙ ИЗМЕРЕНИЯ ПРОДУКЦИИ МАЛОДЕБИТНЫХ ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В НЕФТЕГАЗОДОБЫЧЕ ИСПЫТАНИЕ СКВАЖИННЫХ ЭЛЕКТРОНАГРЕВАТЕЛЕЙ Исследование глубинно-насосных скважин ИССЛЕДОВАНИЕ ЭФФЕКТИВНОСТИ кабель УЭЦН капитальный ремонт скважин Комплекс оборудования типа КОС и КОС1 КОНСТРУКЦИЯ ВИНТОВОГО ШТАНГОВОГО НАСОСА КОНСТРУКЦИЯ КЛАПАННОГО УЗЛА коррозия Краны. КРЕПЛЕНИЕ СКВАЖИН КТППН МАНИФОЛЬДЫ Маятниковая компоновка Меры безопасности при приготовлении растворов кислоты МЕТОДИКА РАСЧЕТА БУРИЛЬНЫХ КОЛОНН МЕТОДЫ БОРЬБЫ С ОТЛОЖЕНИЯМИ ПАРАФИНА В ФОНТАННЫХ СКВАЖИНАХ Методы воздействия на призабойную зону для увеличения нефтеотдачи пластов МЕТОДЫ И СРЕДСТВА ИЗМЕРЕНИЯ УРОВНЯ ЖИДКОСТЕЙ Методы изучения разрезов скважин. МЕТОДЫ КОСВЕННЫХ ИЗМЕРЕНИЙ ДАВЛЕНИЯ МЕТОДЫ УДАЛЕНИЯ СОЛЕЙ МЕХАНИЗМЫ ПЕРЕДВИЖЕНИЯ И ВЫРАВНИВАНИЯ БУРОВЫХ УСТАНОВОК МЕХАНИЗМЫ ПЕРЕМЕЩЕНИЯ И ВЫРАВНИВАНИЯ МЕХАНИЗМЫ ПРИ СПУСКО-ПОДЪЕМНЫХ ОПЕРАЦИЙ ПРИ БУРЕНИИ НАГРУЗКИ, ДЕЙСТВУЮЩИЕ НА УСТАНОВКУ Наземное оборудование Насосная эксплуатация скважин НАСОСНО-КОМПРЕССОРНЫЕ ТРУБЫ неоднородный пласт Нефть и нефтепродукты Новости портала НОВЫЕ ТЕХНОЛОГИЧЕСКИЕ И ТЕХНИЧЕСКИЕ ОБЕСПЕЧЕНИЕ ЭКОЛОГИЧЕСКОЙ БЕЗОПАСНОСТИ ПРОЦЕССОВ ДОБЫЧИ ОБОРУДОВАНИЕ ГАЗЛИФТНЫХ СКВАЖИН ОБОРУДОВАНИЕ ДЛЯ МЕХАНИЗАЦИИ СПУСКО-ПОДЪЕМНЫХ ОПЕРАЦИЙ Оборудование для нефти и газа ОБОРУДОВАНИЕ ДЛЯ ОДНОВРЕМЕННОЙ РАЗДЕЛЬНОЙ ЭКСПЛУАТАЦ ОБОРУДОВАНИЕ ДЛЯ ПРЕДУСМОТРЕНИЯ ОТКРЫТЫХ ФОНТАНОВ ОБОРУДОВАНИЕ ОБЩЕГО НАЗНАЧЕНИЯ Оборудование ствола скважины, законченной бурением ОБОРУДОВАНИЕ УСТЬЯ КОМПРЕССОРНЫХ СКВАЖИН ОБОРУДОВАНИЕ УСТЬЯ СКВАЖИНЫ Оборудование устья скважины для эксплуатации УЭЦН ОБОРУДОВАНИЕ ФОНТАННЫХ СКВАЖИН ОБОРУДОВАНИЕ ФОНТАННЫХ СКВАЖИН обработка призабойной зоны ОБРАЗОВАНИЕ ГИДРАТОВ И МЕТОДЫ БОРЬБЫ С НИМИ ОБРАЗОВАНИЕ КРИСТАЛЛОГИДРАТОВ В НЕФТЯНЫХ СКВАЖИНАХ ОБЩИЕ ПОНЯТИЯ О ПОДЗЕМНОМ И КАПИТАЛЬНОМ РЕМОНТЕ ОБЩИЕ ПОНЯТИЯ О СТРОИТЕЛЬСТВЕ СКВАЖИН ОГРАНИЧЕНИЕ ПРИТОКА ПЛАСТОВЫХ ВОД Опасные и вредные физические факторы ОПРЕДЕЛЕНИЕ ДАВЛЕНИЯ НА ВЫХОДЕ НАСОСА ОПРОБОВАНИЕ ПЕРСПЕКТИВНЫХ ГОРИЗОНТОВ ОПТИМИЗАЦИЯ РЕЖИМА РАБОТЫ ШСНУ ОПЫТ ЭКСПЛУАТАЦИИ ДНУ С ГИБКИМ ТЯГОВЫМ ЭЛЕМЕНТОМ ОСВОЕНИЕ И ИСПЫТАНИЕ СКВАЖИН ОСВОЕНИЕ И ПУСК В РАБОТУ ФОНТАННЫХ СКВАЖИН ОСЛОЖНЕНИЯ В ПРОЦЕССЕ УГЛУБЛЕНИЯ СКВАЖИНЫ ОСНОВНЫЕ ПОНЯТИЯ И ПОЛОЖЕНИЯ ОСНОВНЫЕ ПОНЯТИЯ И ПОЛОЖЕНИЯ ОСНОВНЫЕ СВЕДЕНИЯ О НЕФТЯНЫХ, ГАЗОВЫХ И ГАЗОКОНДЕНСАТНЫ ОСНОВЫ ГИДРАВЛИЧЕСКИХ РАСЧЕТОВ В БУРЕНИИ ОСНОВЫ НЕФТЕГАЗОДОБЫЧИ ОСНОВЫ ПРОЕКТИРОВАНИЯ НАПРАВЛЕННЫХ СКВАЖИН ОСНОВЫ ПРОМЫШЛЕННОЙ БЕЗОПАСНОСТИ ОЧИСТКА БУРЯЩЕЙСЯ СКВАЖИНЫ ОТ ШЛАМА ОЧИСТКА ПОПУТНЫХ ГАЗОВ пайка и наплавка ПАКЕР ГИДРОМЕХАНИЧЕСКИЙ ДВУХМАНЖЕТНЫЙ ПГМД1 ПАКЕРЫ ГИДРОМЕХАНИЧЕСКИЕ, ГИДРАВЛИЧЕСКИЕ И МЕХАНИЧЕСКИЕ ПАКЕРЫ ДЛЯ ИСПЫТАНИЯ КОЛОНН ПАКЕРЫ РЕЗИНОВО-МЕТАЛЛИЧЕСКОГО ПЕРЕКРЫТИЯ ПРМП-1 ПАКЕРЫ И ЯКОРИ ПАРАМЕТРЫ И КОМПЛЕКТНОСТЬ ЦИРКУЛЯЦИОННЫХ СИСТЕМ Параметры талевых блоков для работы с АСП ПЕРВИЧНОЕ ВСКРЫТИЕ ПРОДУКТИВНЫХ ПЛАСТОВ ПЕРВИЧНЫЕ СПОСОБЫ ЦЕМЕНТИРОВАНИЯ ПЕРЕДВИЖНЫЕ НАСОСНЫЕ УСТАНОВКИ И АГРЕГАТЫ ПЕРЕРАБОТКА ЛОВУШЕЧНЫХ НЕФТЕЙ (НЕФТЕШЛАМОВ) ПЕРИОДИЧЕСКИЙ ГАЗЛИФТ ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ ДНУ ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ РАБОТЫ ШСНУ Погружение насосов под динамический уровень Подземное оборудование фонтанных скважин ПОДЪЕМ ВЯЗКОЙ ЖИДКОСТИ ПО ЗАТРУБНОМУ ПРОСТРАНСТВУ СКВАЖИНЫ ПОРОДОРАЗРУШАЮЩИЕ ИНСТРУМЕНТЫ ПОРШНЕВЫЕ МАНОМЕТРЫ Потери давления при движении жидкости по нкт Правила безопасности при эксплуатации скважин Правила ведения ремонтных работ в скважинах РД 153-39-023-97 ПРЕДУПРЕЖДЕНИЕ ОБРАЗОВАНИЯ СОЛЕЙ ПРЕДУПРЕЖДЕНИЯ ОБРАЗОВАНИЯ АСПО ПРЕДУПРЕЖДЕНИЯ ОБРАЗОВАНИЯ АСПО при работе ШГН ПРЕИМУЩЕСТВА ДЛИННОХОДОВЫХ Приготовление растворов кислот. ПРИГОТОВЛЕНИЕ, ОЧИСТКА БУРОВЫХ РАСТВОРОВ ПРИМЕНЕНИЕ СТРУЙНЫХ КОМПРЕССОРОВ ДЛЯ УТИЛИЗАЦИИ ПРИМЕНЕНИЕ УЭЦН В СКВАЖИНАХ ОАО «ОРЕНБУРГНЕФТЬ» ПРИНЦИП ДЕЙСТВИЯ И ОСОБЕННОСТИ КОНСТРУКЦИИ ДНУ С ЛМП ПРИЧИНЫ И АНАЛИЗ АВАРИЙ ПРОГНОЗИРОВАНИЕ ОТЛОЖЕНИЯ НОС ПРИ ДОБЫЧЕ НЕФТИ ПРОЕКТИРОВАНИЕ ТРАЕКТОРИИ НАПРАВЛЕННЫХ СКВАЖИН ПРОЕКТИРОВАНИЕ, ОБУСТРОЙСТВО И АНАЛИЗ РАЗРАБОТКИ УГЛЕВОДОРОДНЫХ МЕСТОРОЖДЕНИЙ Производительность насоса ПРОМЫВКА СКВАЖИН И БУРОВЫЕ РАСТВОРЫ ПРОМЫСЛОВЫЕ ИССЛЕДОВАНИЯ ПРОМЫСЛОВЫЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ ЗОН ОБРАЗОВАНИЯ НОС ПРОМЫСЛОВЫЙ СБОР И ПОДГОТОВКА НЕФТИ, ГАЗА И ВОДЫ ПРОТИВОВЫБРОСОВОЕ ОБОРУДОВАНИЕ ПУТИ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ЭКСПЛУАТАЦИИ СКВАЖИН РАЗМЕЩЕНИЕ ЭКСПЛУАТАЦИОННЫХ И НАГНЕТАТЕЛЬНЫХ СКВАЖИН НА Разное РАЗРУШЕНИЕ ГОРНЫХ ПОРОД РАСПРЕДЕЛЕНИЕ ОБРЫВОВ ПО ДЛИНЕ КОЛОННЫ ШТАНГ РАСЧЕТ ДНУ РАСЧЕТ ПРОИЗВОДИТЕЛЬНОСТИ ДНУ Регулирование свойств цементного раствора и камня с помощью реагентов Режимы добывающих и нагнетательных скважин. РЕЗЕРВЫ СНИЖЕНИЯ ЭНЕРГОПОТРЕБЛЕНИЯ ПРИ ЭКСПЛУАТАЦИ РЕМОНТЫ ПО ЭКОЛОГИЧЕСКОМУ ОЗДОРОВЛЕНИЮ ФОНДА СКВАЖИН РОЛЬ ФОНТАННЫХ ТРУБ САМОХОДНЫЕ УСТАНОВКИ С ПОДВИЖНЫМ… СЕТКА РАЗМЕЩЕНИЯ СКВАЖИН СИСТЕМЫ УЛАВЛИВАНИЯ ЛЕГКИХ УГЛЕВОДОРОДОВ Скважинные уплотнители (пакеры) Скважинные центробежные насосы для добычи нефти СОСТАВ И НЕКОТОРЫЕ СВОЙСТВА ВОД НЕФТЯНЫХ И ГАЗОВЫХ МЕСТ СПЕЦИАЛЬНЫЙ НЕВСТАВНОЙ ШТАНГОВЫЙ НАСОС СПОСОБЫ ДОБЫЧИ НЕФТИ, ПРИМЕНЯЕМЫЕ НА МЕСТОРОЖДЕНИЯХ ОАО СПОСОБЫ ОЦЕНКИ СОСТОЯНИЯ ПЗП СРАВНИТЕЛЬНЫЕ ИСПЫТАНИЯ НАСОСНЫХ УСТАНОВОК СРЕДСТВА И МЕТОДЫ ПОВЕРКИ СЧЕТЧИКОВ КОЛИЧЕСТВА ГАЗОВ СРЕДСТВА И МЕТОДЫ ПОВЕРКИ СЧЕТЧИКОВ КОЛИЧЕСТВА ЖИДКОСТЕЙ СТАДИИ РАЗРАБОТКИ МЕСТОРОЖДЕНИЙ Станки-качалки Струйные насосы струйный насос СЧЕТЧИКИ КОЛИЧЕСТВА ГАЗОВ СЧЕТЧИКИ КОЛИЧЕСТВА ЖИДКОСТЕЙ ТАЛЕВЫЕ МЕХАНИЗМЫ ТЕМПЕРАТУРА И ДАВЛЕНИЕ В ГОРНЫХ ПОРОДАХ И СКВАЖИНАХ Теоретические основы безопасности ТЕХНИКА ИЗМЕРЕНИЯ РАСХОДА Техническая физика ТРАЕКТОРИЮ ПЕРЕМЕЩЕНИЯ ЗАБОЯ СКВАЖИНЫ Трубы УКАЗАНИЯ ПО РАСЧЕТУ ТОКОВ КОРОТКОГО ЗАМЫКАНИЯ УСЛОВИЯ ПРИТОКА ЖИДКОСТИ И ГАЗА В СКВАЖИНЫ Установки гидропоршневых насосов для добычи нефти Установки погружных винтовых электронасосов Установки погружных диафрагменных электронасосов Устьевое оборудование УТЯЖЕЛЕННЫЕ БУРИЛЬНЫЕ ТРУБЫ УЭЦН уэцн полностью ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИНТЕНСИВНОСТЬ ОБРАЗОВАНИЯ АСПО Физико-механические свойства пород-коллекторов ФИЗИЧЕСКАЯ ХАРАКТЕРИСТИКА ГАЗОВ НЕФТЯНЫХ И ГАЗОВЫХ МЕСТ ФИЛЬТРЫ Фонтанный способ добычи нефти ЦЕМЕНТИРОВАНИЕ СКВАЖИН ЦИРКУЛЯЦИОННЫЕ СИСТЕМЫ БУРОВЫХ УСТАНОВОК Шлакопесчаные цементы Шлакопесчаные цементы совместного помола Штанги насосные (ШН) ШТАНГОВЫЕ НАСОСНЫЕ УСТАНОВКИ (ШСНУ) ШТАНГОВЫЕ НАСОСЫ ДЛЯ ПОДЪЕМА ВЯЗКОЙ НЕФТИ ШТАНГОВЫЕ СКВАЖИННЫЕ НАСОСЫ Штанговые скважинные насосы ШСН ЭКСПЛУАТАЦИЯ ГАЗОВЫХ СКВАЖИН эксплуатация малодебитных скважин ЭКСПЛУАТАЦИЯ МАЛОДЕБИТНЫХ СКВАЖИН НА НЕПРЕРЫВНОМ РЕЖИМЕ ЭКСПЛУАТАЦИЯ ОБВОДНЕННЫХ ПАРАФИНСОДЕРЖАЩИХ СКВАЖИН ЭКСПЛУАТАЦИЯ СКВАЖИН ЭКСПЛУАТАЦИЯ СКВАЖИН УЭЦН ЭЛЕКТРОДЕГИДРАТОР. ЭЛЕКТРОДИАФРАГМЕННЫЙ НАСОС энергосбережение скважинного электронасосного агрегата ЯКОРИ

Сергей Г. Т ихомиров, Оль га В. Карманова, Юрий В. Пятаков, Александр А. Маслов Введите здесь название статьи Sergei G. Tikhomirov, Ol ga V. Karmanova, Yurii V. Pyatakov, Ale ksandr A. Maslov Введите здесь название статьи на английском языке Вестник ВГУИТ/Proceedings of VSUET, 3, 06 Обзорная статья/eview article УДК 6.53 DOI: http://doi.org/0.094/30-0-06-3-93-99 Программный комплекс для решения задач математического моделирования процесса изотермической вулканизации Сергей Г. Тихомиров, Ольга В. Карманова, Юрий В. Пятаков, Александр А. Маслов [email protected] [email protected] [email protected] [email protected] кафедра информационных и управляющих систем, Воронеж. гос. ун-т. инж. техн., пр-т Революции, 9, г. Воронеж, Россия кафедра химии и химической технологии органических соединений и переработки полимеров, Воронеж. гос. ун-т. инж. техн., пр-т Ленинский, 4, г. Воронеж, Россия Реферат. На основе общих закономерности серной вулканизации диеновых каучуков рассмотрены принципы эффективного проведения процесса с использованием многокомпонентных структурирующих систем. Отмечается, что описание механизма действия комплексных сшивающих систем осложняется многообразием взаимодействий компонентов и влиянием каждого из них на кинетику вулканизации, что приводит к различным рецептурно-технологическим усложнениям реальной технологии и сказывается на качестве и технико-экономических показателях производства резинотехнических изделий. Системный анализ процесса изотермической вулканизации выполнен на основе известных теоретических подходов и включал интегрирование различных методов и приемов исследования в единую взаимосвязанную совокупность методов. В ходе анализа кинетики вулканизации установлено, что параметры образования пространственной сетки вулканизатов зависят от множества факторов, для оценки которых требуется специальное математическое и алгоритмическое обеспечение. В результате проведенной стратификации изучаемого объекта выделены основные подсистемы. Разработан программный комплекс для решения прямой и обратной кинетических задач процесса изотермической вулканизации. Информационное обеспечение «Изотермическая вулканизация» разработано в виде прикладных программ математического моделирования процесса изотермической вулканизации и направлено на решение прямой и обратной кинетических задач. При решении задачи уточнения общей схемы химических превращений использовался универсальный механизм, включающий побочные химические реакции. Программный продукт включает в себя численные алгоритмы решения системы дифференциальных уравнений. Для решения обратной кинетической задачи используются алгоритмы минимизации функционала, при наличии ограничений на искомые параметры. Для описания работы с данным продуктом приведена логическая блок-схема программы. Приведен пример решения обратной кинетической задачи с помощью программы. Разработанное информационное обеспечение, реализовано на языке программирования С++. Для определения начальной концентрации действительного агента вулканизации использована универсальная зависимость, позволяющая использовать модель с различными свойствами многокомпонентных структурирующих систем Ключевые слова: изотермическая вулканизация, математическое моделирование, схема кинетики вулканизации, информационное обеспечение The software package for solving problems of mathematical modeling of isothermal curing process Sergei G. Tikhomirov, Ol ga V. Karmanova, Yurii V. Pyatakov, Aleksandr A. Maslov [email protected] [email protected] [email protected] [email protected] information and control systems department, Voronezh state university of engineering technologies, evolution Av., 9 Voronezh, ussia chemistry and chemical technology of organic compounds and polymers processing department, Voronezh state university of engineering technologies, Leninsky Av., 4 Voronezh, ussia Summary. On the basis of the general laws of sulfur vulcanization diene rubbers the principles of the effective cross-linking using a multi-component agents was discussed. It is noted that the description of the mechanism of action of the complex cross-linking systems are complicated by the diversity of interactions of components and the influence of each of them on the curing kinetics, leading to a variety technological complications of real technology and affects on the quality and technical and economic indicators of the production of rubber goods. ased on the known theoretical approaches the system analysis of isothermal curing process was performed. It included the integration of different techniques and methods into a single set of. During the analysis of the kinetics of vulcanization it was found that the formation of the spatial grid parameters vulcanizates depend on many factors, to assess which requires special mathematical and algorithmic support. As a result of the stratification of the object were identified the following major subsystems. A software package for solving direct and inverse kinetic problems isothermal curing process was developed. Information support Isothermal vulcanization is a set of applications of mathematical modeling of isothermal curing. It is intended for direct and inverse kinetic problems. When solving the problem of clarifying the general scheme of chemical transformations used universal mechanism including secondary chemical reactions. Functional minimization algorithm with constraints on the unknown parameters was used for solving the inverse kinetic problem. Shows a flowchart of the program. An example of solving the inverse kinetic problem with the program was introduced. Dataware was implemented in the programming language C ++. Universal dependence to determine the initial concentration of the curing agent was applied. It allowing the use of a model with different properties of multicomponent curing systems. informed decisions. Keywords: isothermal curing, mathematical modeling, the scheme of the curing kinetics, informational software Для цитирования Тихомиров С.Г., Карманова О.В., Пятаков Ю.В., Маслов А.А. Программный комплекс для решения задач математического моделирования процесса изотермической вулканизации // Вестник ВГУИТ. 06. 3. С 93 99. doi:0.094/30-0-06-3-93-99 For citation Tihomirov S.G., Karmanova O.V., Pyatakov Yu.V., Maslov A.A The software package for solving problems of mathematical modeling of isothermal curing process. Vestnik VSUET . 06. no 3 pp. 93 99 (in uss.). doi:0.094/30-0-06-3-93-99 93

Вестник ВГУИТ/Proceedings of VSUET, 3, 06 94 Введение К настоящему времени установлены общие закономерности серной вулканизации диеновых каучуков, основанные на существовании в композициях действительных агентов вулканизации эластомеров (ДАВ). Однако принципы эффективного проведения процесса с использованием многокомпонентных структурирующих систем изучены недостаточно. Описание механизма их действия осложняется многообразием взаимодействий компонентов и влиянием каждого из них на кинетику вулканизации. Это приводит к различным рецептурно-технологическим усложнениям реальной технологии и сказывается на качестве и технико-экономических показателях производства резинотехнических изделий. Анализ кинетики вулканизации показал, что существующие подходы к ее описанию основываются на химических реакциях макромолекул с вулканизующими агентами, а параметры образования пространственной сетки вулканизаторов зависят от множества факторов, влияние которых можно оценить только с помощью специального математического и алгоритмического обеспечения . Для повышения эффективности исследования, выявления причин, приводящих к получению продукции, не отвечающей нормативным требованиям, прогноза протекания процесса необходимо создание специального программного обеспечения (ПО). Целью настоящей работы является разработка программного комплекса для решения прямой и обратной кинетических задач процесса изотермической вулканизации. Системный анализ процесса вулканизации Анализ известных теоретических подходов к описанию вулканизации, а также других процессов в химической промышленности [ 4] и аспектов их практической реализации с учетом особенностей отдельных стадий позволил выявить общие системные свойства и основные закономерности процессов и определить направление исследований для получения новой информации по оптимизации режимов вулканизации и свойств готовых изделий . Системный анализ включает интегрирование различных методов и приемов исследования (математических, эвристических), разработанных в рамках различных научных направлений в единую взаимосвязанную совокупность методов. Многофакторный анализ процесса позволил разработать общую структуру исследования (рисунок). Объект исследования является слабоструктурированным, поскольку содержит как качественные элементы (эластомеры, наполнители, условия проведения процесса) так и малоизученные (многокомпонентные структурирующие системы, неконтролируемые возмущения), которые имеют тенденцию доминировать. В состав общей структуры входят элементы, которые необходимо теоретически обосновать (кинетическая модель, процессы тепломассопереноса, оптимизация режимов, процессы переработки). Таким образом, для оценки способов решения необходимо определить все существующие взаимосвязи и установить их влияние с учетом взаимодействий на поведение всей системы в целом. Анализ общей структуры показал, что механические свойства вулканизатов определяются химическими реакциями макромолекул с вулканизующими агентами, а для оценки параметров пространственной сетки вулканизатов необходимо разработать специальное математическое и алгоритмическое обеспечение. В результате проведенной стратификации изучаемого объекта выделены следующие основные подсистемы:) анализ и учет термофлуктуационных явлений, обеспечивающих ускорение протекания химических реакций;) кинетическая модель вулканизации; 3) оптимизация режимов вулканизации, обеспечивающая получение требуемых механических свойств. Математическое моделирование процесса изотермической вулканизации Получение достоверной информации о протекании процессов сшивания эластомеров комплексными структурирующими системами, тесно связано с проблемами проектирования, оптимизации и управления режимами вулканизации в промышленности. Известно, что одним из традиционных способов описания формальной кинетики вулканизации является использование кусочно-определенных функций для отдельных стадий процесса: индукционного периода, структурирования и реверсии. Описание процесса в целом и расчет кинетических констант в настоящее время выполнен только для отдельных типов каучуков и вулканизующих систем . Основные заключения о кинетике процесса основываются на модельных системах с низкомолекулярными аналогами эластомеров. В то же время полученные количественные данные не всегда возможно распространять на производственные процессы.

Вестник ВГУИТ/Proceedings of VSUET, 3, 06 Рисунок. Схема исследования процесса вулканизации эластомеров Figure. Scheme of study process of vulcanization of elastomers Оценка физико-механических свойств производственных резин, по данным, полученным на предприятии, является, безусловно, прогрессивным методом в решении задачи моделирования процесса вулканизации, но требует строгого внутреннего единства физико-химического подхода на каждом этапе исследования и разработки вычислительных алгоритмов и программ. Ответить на этот вопрос можно, только тщательно выполнив эксперименты по плану, соответствующему предполагаемой кинетической модели и рассчитав несколько альтернативных вариантов модели. Для этого требуется независимым методом установить число формальных механизмов реакций, ответственных за структурирование эластомерной композиции. Традиционные методики анализа процессов во временной области не дают возможности четко разделять процессы с синергическим взаимодействием, что, в свою очередь, не позволяет использовать их для анализа производственных резин. При решении задачи уточнения общей схемы химических превращений целесообразно исходить из максимального в некотором смысле механизма. Поэтому в кинетическую схему включены дополнительные реакции, описывающие образование и деструкцию лабильных полисульфидных связей (Vu lab), внутримолекулярную циклизацию и другие реакции, приводящие к модификации макромолекул, образование макрорадикала и его реакцию с подвесками ДАВ. Система дифференциальных уравнений (ДУ) по стадиям процесса будет иметь следующий вид : dca / dt k CA k4ca C *, dc / dt k CA kc k4ca C * k 8C *, dc * / dt k C k3 k5 k7 C * k C k C C, 6 VuLab 4 A * dcvust / dt k3 C *, dcvulab / dt k5c k6cvulab, dcc / dt k7 C *, dc * / dt k8c k 8C *, dc / dt k8 C. () 95

Вестник ВГУИТ/Proceedings of VSUET, 3, 06 96 Начальные условия: 0 0 CA S8 AC Akt C ; C 0 0; C 0 0; * VuSt C 0 0; C 0 0; VuLab C C 0 C 0, * C 0 0; C 0 4,95 ; где ς, θ, η, коэффициенты, начальная концентрация серы, начальная концентрация ускорителя, θ начальная концентрация активатора (оксида цинка), [С (0)] η начальная концентрация макрорадикалов. Здесь A действительный агент вулканизации; В предшественник сшивания; В* его активная форма; С внутримолекулярная связанная сера; VuSt, VuLab стабильные и лабильные узлы вулканизационной сетки; каучук; * макрорадикал каучука в результате термофлуктуационного распада; α, β, γ и δ стехиометрические коэффициенты, k, k, k 8, k 9 (k 8) константы скорости реакции, относящиеся к соответствующим стадиям процесса. Прямая задача кинетики (ПЗК) задача нахождения концентрации вулканизационных узлов как функции времени. Решение ПЗК сводится к решению системы ДУ () при заданных начальных условиях. Кинетическая кривая процесса вулканизации определяется по величине крутящего момента Mt. Обратная задача кинетики (ОЗК) задача идентификации констант скорости реакций, стехиометрических коэффициентов и переменных в системе (). Решение ОЗК осуществляется путем минимизации функционала: где Ф k, k,..., k, k, 8 8 t к q k, k,..., k8, k 8, tdt 0 q k, k,..., k, k, t 8 8 M t M M M С min / max min Vu (), (3) M max, M min соответственно максимальное и минимальное значения коэффициент. Mt, масштабный Описание программного обеспечения Программное обеспечение «Изотермическая вулканизация» разработано в качестве комплекса прикладных программ (КПП) для решения задач, связанных с математическим моделированием процесса изотермической вулканизации. Для решения системы ДУ в пакете предусмотрены численные методы, включающие в себя: метод Рунге-Кутта четвертого порядка; метод Адамса. Решение обратной кинетической задачи сводится к оценке констант скоростей реакций, стехиометрических коэффициентов и переменных в системе ДУ (). Для минимизации функционала () в пакете программ на усмотрения пользователя могут использоваться следующие методы: покоординатного спуска, Хука-Дживса, Розенброка, Пауэлла, Нелдера-Мида, усреднения координат (с использованием элементов случайного поиска). Градиентные методы (первого порядка): наискорейшего спуска, сопряженных направлений (Флетчера-Ривса), переменной метрики (Давидона-Флетчера-Пауэлла), параллельных градиентов (Зангвилла). На рисунке изображена структурная схема, разработанного программного обеспечения. Процесс идентификации констант скорости реакций, коэффициентов уравнений и стехиометрических коэффициентов осуществляется в несколько этапов: оцифровка реограмм; перевод крутящих моментов в концентрации; определение начальных концентраций; определение значений искомых параметров констант обеспечивающих минимум функционала (). Оцифровка реограмм может происходить вручную или же в автоматическом режиме с помощью, интегрированной в пакет, программы GrDigit. Обработка экспериментальных данных может осуществляться как для одного измерения, так и набора (до 6 реограмм). Перевод крутящих моментов в концентрации узлов вулканизационной сетки осуществляется следующим образом: значения крутящих моментов переводятся в условные единицы: усл / M M M M M (4) тек min max min затем условные единицы переводят в (моль/кг), путем умножения M усл на масштабный коэффициент. Определение начальной концентраций C 0 ДАВ осуществляется по формуле: A 0 0 CA S8 AC Akt C (5)

Вестник ВГУИТ/Proceedings of VSUET, 3, 06 Рисунок. Структурная схема программного обеспечения Figure. Structural software scheme Апробация разработанного программного обеспечения В качестве исходных данных использованы реометрические кривые, полученные при следующих начальных условиях:. Значение концентрации серы в смеси: = 0,0078 моль/кг.. Концентрация ускорителя: = 0,009 моль/кг. 3. Концентрация активатора: θ = 0,00 моль/кг. На рисунке 3 приведены экспериментальные и расчетные значения концентрации вулканизационных узлов, полученные в результате решения ОКЗ. В таблице приведены рассчитанные значения констант скоростей реакций, в таблице оцененные значения стехиометрических коэффициентов и параметров модели. Таблица Значение констант скоростей реакций Table The value of the reaction rate constants Константа Constant Значения Values Константа Constant Значения Values k 0, k6 0,553 k 0, k7 0,96 k3 4,8 0-0 k8,3 k4,3 k8" 0, k5,89 0-0 Рисунок 3. Изменения концентраций узлов вулканизационной сетки во времени. Figure 3. Changes in the concentrations of the vulcanization grid points in time. the calculated values; experimental values. Оцифрованные и обработанные экспериментальные данные заносятся в программу, определяются начальные приближения и диапазон поиска констант, после чего выбирается метод оптимизации. Таблица Значения стехиометрических коэффициентов и параметров модели Table The values of stoichiometric coefficients and parameters of the model pas α β γ δ ξ θ η,4,0,9,65 0 8 0,97-4, 97

Вестник ВГУИТ/Proceedings of VSUET, 3, 06 Заключение На основе системного анализа теоретических подходов к описанию вулканизации усовершенствована общая структурная схема исследования данного процесса. Математическая модель процесса вулканизации дополнена начальными условиями, которые определены как функции исходных концентраций компонентов вулканизующей группы. Для решения обратной кинетической задачи предложены дополнительные критерии качества модели. Разработан программный продукт, предназначенный для проведения научно-исследовательских работ при изучении процессов вулканизации резиновых смесей с использованием многокомпонентных структурирующих систем. КПП имеет блочно-модульную структуру, что позволяет осуществлять его расширение без потери функциональности. Направлениями его модернизации является включение в состав математического описания неизотермического режима вулканизации с дальнейшей интеграцией в контур АСУТП в качестве экспертной информационно-управляющей системы для выдачи рекомендаций по управлению процессом вулканизации и принятия решений. Работа выполнена при финансовой поддержке государственного задания 04/ (номер НИР 304) по теме «Синтез многофункциональных систем контроля качества для пищевой и химической промышленности» ЛИТЕРАТУРА Тихомиров С.Г., Битюков В.К., Подкопаева С.В., Хромых Е.А. и др. Математическое моделирование объектов управления в химической промышленности. Воронеж: ВГУИТ, 0. 96 с. Хаустов И.А. Управление синтезом полимеров периодическим способом на основе дробной подачи компонентов реакции // Вестник ТГТУ. 04. 4 (0) С. 787 79. 3 Хаустов И.А. Управление процессом деструкции полимеров в растворе на основе дробной загрузки инициатора // Вестник ВГУИТ. 04. 4. С. 86 9. 4 Битюков В.К., Хаустов И.А., Хвостов А.А. и др. Системный анализ процесса термоокислительной деструкции полимеров в растворе как объекта управления // Вестник ВГУИТ. 04. 3 (6). С. 6 66. 5 Карманова О.В. Физико-химические основы и активирующие компоненты вулканизации полидиенов: дисс. д-ра техн. наук. Воронеж, 0. 6 Молчанов В.И., Карманова О.В., Тихомиров С.Г. Моделирование кинетики вулканизации полидиенов // Вестник ВГУИТ. 03.. С. 4 45. 7 Hardis., Jessop J.L.P., Peters F.E., Kessler M.. Cure kinetics characterization and monitoring of an epoxy resin using DSC, aman spectroscopy, and DEA // Composite. 03. Part A. V. 49. P. 00 08. 8 Javadi M., Moghiman M., eza Erfanian M., Hosseini N. Numerical Investigation of Curing Process in eaction Injection Molding of ubber for Quality Improvements // Key Engineering Materials. 0. V. 46 463. P. 06. EFEENCES Tikhomirov S.G., ityukov V.K. Podkopaeva S.V., Khromykh E.A. et al. Matematicheskoe modelirovanie ob ektov upravleniya v khimicheskoi promyshlennosti Voronezh, VSUET, 0. 96 p. (in ussian). Khaustov I.A. Management polymer synthesis batch process based on the fractional flow of the reaction components. Vestnik TGTU 04, no. 4 (0), pp. 787 79. (in ussian). 3 Khaustov I.A. Process control degradation of polymers in the solution based on the fractional loading of the initiator. Vestnik VGUIT 04, no. 4, pp. 86 9 (in ussian). 4 ityukov V.K., Khaustov I.A., Khvostov A.A. System analysis of the thermo oxidative degradation of polymers in solution as a control object. Vestnik VGUIT 04, no. 3 (6), pp. 6 66. (in ussian). 5 Karmanova O.V. Fiziko-khimicheskie osnovy i aktiviruyushchie komponenty vulknizatsii polidienov Voronezh, 0. (in ussian). 6 Molchanov V.I., Karmanova O.V., Tikhomirov S.G. Modeling the kinetics of vulcanization polydienes. Vestnik VGUIT 03, no., pp. 4 45. (in ussian). 7 Hardis., Jessop J.L.P., Peters F.E., Kessler M.. Cure kinetics characterization and monitoring of an epoxy resin using DSC, aman spectroscopy, and DEA. Composite, 03, part A, vol. 49, pp. 00 08. 8 Javadi M., Moghiman M., eza Erfanian M., Hosseini N. Numerical Investigation of Curing Process in eaction Injection Molding of ubber for Quality Improvements. Key Engineering Materials. 0, vol. 46 463, pp. 06. 98

Вестник ВГУИТ/Proceedings of VSUET, 3, 06 СВЕДЕНИЯ ОБ АВТОРАХ Сергей Т. Тихомиров профессор, кафедра информационных и управляющих систем, Воронежский государственный университет инженерных технологий, пр-т Революции, 9, г. Воронеж, 394036, Россия, [email protected] Ольга В. Карманова зав. кафедрой, профессор, кафедра химии и химической технологии органических соединений и переработки полимеров, Воронежский государственный университет инженерных технологий, Лениннский пр-т, 4, г. Воронеж, 394000, Россия, [email protected] Юрий В. Пятаков доцент, кафедра информационных и управляющих систем, Воронежский государственный университет инженерных технологий, пр-т Революции, 9, г. Воронеж, 394036, Россия, [email protected] Александр А. Маслов аспирант, кафедра информационных и управляющих систем, Воронежский государственный университет инженерных технологий, пр-т Революции, 9, г. Воронеж, 394036, Россия, [email protected] INFOMATION AOUT AUTHOS Sergei G. Tikhomirov professor, department of information and control systems, Voronezh state university of engineering technologies, evolution Av., 9 Voronezh, ussia, [email protected] Olga V. Karmanova professor, head of department, department of chemistry and chemical technology of organic compounds and polymers processing, Voronezh state university of engineering technologies, Leninsky Av., 4 Voronezh, ussia, [email protected] Yurii V. Pyatakov associate professor, department of information and control systems, Voronezh state university of engineering technologies, evolution Av., 9 Voronezh, ussia, [email protected] Aleksandr A. Maslov graduate student, department of information and control systems, Voronezh state university of engineering technologies, evolution Av., 9 Voronezh, ussia, [email protected] КРИТЕРИЙ АВТОРСТВА Сергей Т. Тихомиров предложил методику проведения эксперимента и организовал производственные испытания Александр А. Маслов обзор литературных источников по исследуемой проблеме, провел эксперимент, выполнил расчеты Ольга В. Карманова консультация в ходе исследования Юрий В. Пятаков написал рукопись, корректировал её до подачи в редакцию и несет ответственность за плагиат КОНФЛИКТ ИНТЕРЕСОВ Авторы заявляют об отсутствии конфликта интересов. CONTIUTION Sergei G. Tikhomirov proposed a scheme of the experiment and organized production trials Aleksandr A. Maslov review of the literature on an investigated problem, conducted an experiment, performed computations Olga V. Karmanova consultation during the study Yurii V. Pyatakov wrote the manuscript, correct it before filing in editing and is responsible for plagiarism CONFLICT OF INTEEST The authors declare no conflict of interest. ПОСТУПИЛА 7.07.06 ECEIVED 7.7.06 ПРИНЯТА В ПЕЧАТЬ.08.06 ACCEPTED 8..06 99

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Вулканиз а ция -- технологический процесс взаимодействия каучуков с вулканизующим агентом, при котором происходит сшивание молекул каучука в единую пространственную сетку. Вулканизующими агентами могут являться: сера, пероксиды, оксиды металлов, соединения аминного типа и др. Для повышения скорости вулканизации используют различные катализаторы-ускорители.

При вулканизации повышаются прочностные характеристики каучука, его твёрдость, эластичность, тепло- и морозостойкость, снижаются степень набухания и растворимость в органических растворителях. Сущность вулканизации - соединение линейных макромолекул каучука в единую "сшитую" систему, так называемую вулканизационную сетку. В результате вулканизации между макромолекулами образуются поперечные связи, число и структура которых зависят от метода В. При вулканизации некоторые свойства вулканизуемой смеси изменяются со временем не монотонно, а проходят через максимум или минимум. Степень вулканизации, при которой достигается наилучшее сочетание различных физико-механических свойств резин, называется оптимумом вулканизации.

Вулканизации подвергается обычно смесь каучука с различными веществами, обеспечивающими необходимые эксплуатационные свойства резин (наполнители, например сажа, мел, каолин, а также мягчители, противостарители и др.).

В большинстве случаев каучуки общего назначения (натуральный, бутадиеновый, бутадиен-стирольный) вулканизуют, нагревая их с элементарной серой при 140-160°С (серная В.). Образующиеся межмолекулярные поперечные связи осуществляются через один или несколько атомов серы. Если к каучуку присоединяется 0,5-5% серы, получается мягкий вулканизат (автомобильные камеры и покрышки, мячи, трубки и т.д.); присоединение 30-50% серы приводит к образованию жёсткого неэластичного материала - эбонита. Серная вулканизация может быть ускорена добавлением небольших количеств органических соединений, так называемых ускорителей вулканизации - каптакса, тиурама и др. Действие этих веществ в полной мере проявляется только в присутствии активаторов - окислов металлов (чаще всего окиси цинка).

В промышленности серную вулканизацию производят нагреванием вулканизуемого изделия в формах под повышенным давлением или же в виде неформовых изделий (в "свободном" виде) в котлах, автоклавах, индивидуальных вулканизаторах, аппаратах для непрерывной вулканизации. и др. В этих аппаратах нагревание осуществляют паром, воздухом, перегретой водой, электричеством, токами высокой частоты. Формы обычно помещают между обогреваемыми плитами гидравлического пресса. Вулканизация с помощью серы была открыта Ч. Гудьиром (США, 1839) и Т. Гэнкоком (Великобритания, 1843). Для вулканизации каучуков специального назначения применяют органические перекиси (например, перекись бензоила), синтетические смолы (например, феноло-формальдегидные), нитро- и диазосоединения и другие; условия процесса те же, что и для серной вулканизации.

Вулканизация возможна также под действием ионизирующей радиации - g-излучения радиоактивного кобальта, потока быстрых электронов (радиационная вулканизации). Методы бессерной и радиационной В. позволяют получать резины, обладающие высокой термической и химической стойкостью.

В полимерной промышленности вулканизация применяется в экструзионном производстве каучуков.

Вулканизация при р емонт е покрышек

Технологический процесс ремонта покрышек состоит из подготовки поврежденных участков для наложения починочных материалов, наложения починочных материалов на поврежденные участки и вулканизации ремонтируемых мест.

Вулканизация ремонтируемых мест является одной из самых важных операций при ремонте покрышек.

Сущность вулканизации заключается в том, что при нагреве до известной температуры в невулканизованной резине протекает физико-химический процесс, в результате которого резина приобретает эластичность, прочность, упругость и другие необходимые качества.

При вулканизации двух кусков резины, склеенных резиновым клеем, они превращаются в монолитную конструкцию и прочность их соединения не отличается от прочности сцепления основного материала внутри каждого куска. При этом для обеспечения необходимой прочности куски резины должны быть прижаты -- опрессованы под давлением 5 кг/см 2 .

Для того чтобы совершился процесс вулканизации, недостаточно произвести только нагрев до необходимой температуры, т. е. до 143+2°; процесс вулканизации не совершается мгновенно, поэтому нагретые покрышки необходимо выдержать определенное время при температуре вулканизации.

Вулканизация может произойти и при более низкой температуре, чем 143°, но при этом требуется больше времени. Так, например, при снижении температуры против указанной всего лишь на 10° время вулканизации должно быть увеличено в два раза. С целью сокращения времени на предварительный прогрев при вулканизации применяют электроманжеты, позволяющие вести прогрев одновременно с двух сторон покрышки, сокращая при этом время вулканизации и улучшая качество ремонта. При одностороннем прогреве покрышек большой толщины происходит перевулканизация участков резин, соприкасающихся с вулканизационным оборудованием, и недовулканизация резин с противоположной стороны. Время вулканизации в зависимости от вида повреждения и размера покрышки колеблется от 30 до 180 минут -- для покрышек и от 15 до 20 минут для камер

Для вулканизации в автохозяйствах применяется стационарный вулканизационный аппарат модели 601, выпускаемый трестом ГАРО.

В рабочий комплект вулканизационного аппарата входят корсеты для секторов, затяжки корсетов, протекторные и бортовые профильные пoдкладки, струбцины, прижимные накладки, песочные мешки, матрацы,.

При давлении пара в котле 4 кг/см 2 обеспечивается необходимая температура поверхности вулканизационного оборудования 143"+2°. При давлении 4,0--4,1 кг/см 2 предохранительный клапан должен открываться.

Вулканизационные аппараты перед пуском в эксплуатацию должны быть осмотрены инспектором котлонадзора.

Внутренние повреждения покрышек вулканизуются на секторах, наружные -- на плитах с применением профильных подкладок. Сквозные повреждения (при наличии электроманжет вулканизуются на плите с профильной подкладкой, при отсутствии электроманжет раздельно: сначала с внутренней стороны на секторе, затем с наружной на плите с профильной накладкой.

Электроманжета состоит из нескольких слоев резины и наружного слоя прорезиненного чефера, в середине которых помещена спираль из нихромовой проволоки для нагрева и терморегулятор для поддержания постоянной температуры (150°).

вулканизация промышленность ремонт покрышка

Рис. 4. Стационарный вулканизационный аппарат ГАРО модели 601: 1 -- сектор; 2 -- бортовая плита; 3 -- котел-парообразователь; 4 -- малые струбцины для камер; 5 -- кронштейн для камер; 6 -- манометр; 7--струбцина для покрышек; 8 -- топка; 9 -- водомерное стекло; 10 -- ручной плунжерный насос; 11 -- всасывающая трубка

Перед вулканизацией отмечают границы ремонтируемого участка покрышки. Для устранения прилипания тальком опудри-вают его, а также песочный мешочек, электроманжету и вулка-низационное оборудование (секторы, профильные подкладки и др.), соприкасающиеся с покрышкой.

При вулканизации на секторе опрессовка достигается с помощью затяжки корсета, а при вулканизации на плите с помощью мешка с песком и струбцины.

Профильные подкладки (протекторные и бортовые) подбираются в соответствии с ремонтируемым местом покрышки и ее размером.

Электроманжета при вулканизации располагается между покрышкой и песочным мешком.

Время начала и конца вулканизации отмечается мелом на специальной доске, установленной у вулканизационного оборудования.

Отремонтированные покрышки должны отвечать следующим требованиям:

1) покрышки не должны иметь неотремонтированных мест;

2) на внутренней стороне покрышки не должно быть вздутий и следов отслоений заплат, недовулканизации, складок и утолщений, ухудшающих работу камеры;

3) наложенные по протектору или боковине участки резины должны быть полностью свулканизованы до твердости по Шору 55--65;

4) восстановленные в процессе ремонта участки протектора размером более 200 мм должны иметь рисунок, одинаковый со всем протектором покрышки; рисунок типа «Вездеход» должен быть нанесен независимо от размера восстановленного участка протектора;

5) форма бортов покрышки не должна быть искажена;

6) утолщения и впадины, искажающие наружные габариты и поверхность покрышки, не допускаются;

7) отремонтированные участки не должны иметь отставаний; допускается наличие раковин или пор до 20 мм 2 по площади и до 2 мм глубиной в количестве не более двух на квадратный дециметр;

8) качество ремонта покрышек должно обеспечивать гарантийный их пробег после ремонта.

Вулканизация при р емонт е камер

Подобно технологическому процессу ремонта покрышек технологический процесс ремонта камер состоит из подготовки поврежденных участков для наложения заплат, наложения заплат и вулканизации.

В объем работ по подготовке поврежденных участков для наложения заплат входят: выявление скрытых и видимых повреждений, снятие старых невулканизованных заплат, закругление краев с острыми углами, шероховка резин вокруг повреждения, очистка камер от шероховальной пыли.

Рис. 5. Сектор для вулканизации покрышек: 1 -- сектор; 2 -- покрышка; 2 -- корсет; 4 -- затяжка

Рис. 6. Вулканизация бортовых повреждений покрышки на бортовой плите:1 -- покрышка; 2 -- бортовая плита: 3 -- бортовая подкладка; 4 -- мешок с песком; 5 -- металлическая накладка; 6 -- струбцина

Видимые повреждения выявляются внешним осмотром при хорошем освещении и обводятся химическим карандашом.

Для выявления скрытых повреждений, т. е. небольших проколов, незаметных на глаз, камера в надутом состоянии погружается в ванну с водой, и по выходящим пузырькам воздуха определяется место прокола, которое также обводится химическим карандашом. Поврежденная поверхность камеры подвергается шероховке карборундовым камнем или проволочной щеткой на ширине 25--35 мм от границ повреждения, не допуская попадания шероховальной пыли вовнутрь камеры. Зашерохованные места очищаются щеткой.

Починочными материалами для ремонта камер являются: невулканизованная камерная резина толщиной 2 мм, резина камер, негодных для ремонта, и прорезиненный чефер. Сырой, невулканизованной резиной заделываются все проколы и разрывы размером до 30 мм. Резиной для камер ремонтируются повреждения более 30 мм. Эта резина должна быть эластичной, без трещин и механических повреждений. Сырую резину освежают бензином, промазывают клеем концентрации 1: 8 и просушивают в течение 40--45 минут. Камеры шерохуют проволочной щеткой или карборундовым камнем на шероховальном станке, после чего их очищают от пыли, освежают бензином и просушивают в течение 25 минут, затем промазывают два раза клеем концентрации 1: 8 и просушивают после каждой намазки в течение 30--40 минут при температуре 20--30°. Чефер промазывают один раз клеем концентрации 1: 8, затем просушивают.

Заплату вырезают с таким расчетом, чтобы она со всех сторон перекрывала отверстие на 20--30 мм и была меньше границ зашерохованной поверхности на 2--3 мм. Накладывается она на ремонтируемый участок камеры одной стороной и постепенно прикатывается роликом по всей поверхности, так, чтобы между ней и камерой не осталось пузырьков воздуха. При наклейке заплат необходимо следить, чтобы склеиваемые поверхности были совершенно чистыми, свободными от влаги, пыли и жирных пятен.

В тех случаях, когда камера имеет разрыв свыше 500 мм, ее можно отремонтировать путем вырезки поврежденного куска и вставки на его место такого же куска из другой камеры того же размера. Этот метод ремонта получил название стыкования камер. Ширина стыка должна быть не менее 50 мм.

Поврежденная у корпусов вентилей наружная резьба восстанавливается с помощью плашек, а внутренняя -- метчиками.

При необходимости замены вентиля его вырезают вместе с фланцем и привулканизовывают на новом месте другой вентиль. Место расположения старого вентиля ремонтируют, как обычное повреждение.

Вулканизация поврежденных мест производится на вулканизационном аппарате модели 601 или на вулканизационном аппарате ГАРО для вулканизации камер. Время вулканизации заплат--15 минут и фланцев -- 20 минут при температуре 143+2°.

При вулканизации камера прижимаётся струбциной через деревянную накладку к поверхности плиты. Накладка должна быть больше заплаты на 10--15 мм.

Если ремонтируемый участок не помешается на плите, то вулканизуется он в две-три последовательные установки (ставки).

После вулканизации наплывы на незашерохованную поверхность срезают ножницами, а края заплат и заусенцы снимают на камне шероховального станка.

Отремонтированные камеры должны отвечать следующим требованиям:

1) камера, наполненная воздухом, должна быть герметична как по телу камеры, так и в месте крепления вентиля;

2) заплаты должны быть плотно привулканизованы, не иметь пузырей и пористости, их твердость должна быть одинаковой с резиной камеры;

3) края заплат и фланцев не должны иметь утолщений и отслоений;

4) резьба вентиля должна быть исправной.

Размещено на Allbest.ru

...

Подобные документы

    Понятие неметаллические материалы. Состав и классификация резин. Народнохозяйственное значение каучука. Резины общего и специального назначения. Вулканизация, этапы, механизмы и технология. Деформационно-прочные и фрикционные свойства резин и каучуков.

    курсовая работа , добавлен 29.11.2016

    Кинетика вулканизации резины. Особенности вулканизации смесей на основе комбинации каучуков CКД-CКН-40 обычными серными вулканизующими системами. Механизм разрушения полимера. Особенности разрушения полимеров в различных физических и фазовых состояниях.

    отчет по практике , добавлен 06.04.2015

    Разновидности каучука, особенности его применения в промышленности и технологии изготовления. Влияние введения дополнительных ингредиентов и использование вулканизации при изготовлении каучука на конечные свойства продукта. Охрана труда при работах.

    дипломная работа , добавлен 20.08.2009

    Получение динамических термоэластопластов путем смешения каучука с термопластом при одновременной вулканизации эластомера в процессе смешения (метод динамической вулканизации). Особенности влияния концентрации каучука на свойства механических смесей.

    курсовая работа , добавлен 08.06.2011

    Технология изготовления изделий из пластмасс прессованием. Основные группы пластмасс, их физические свойства, недостатки и способы переработки. Специальные свойства резины, зависящие от типа применяемого каучука. Сущность и значение вулканизации.

    лабораторная работа , добавлен 06.05.2009

    Анализ конструкции машины. Сущность процесса вулканизации и работа оборудования. Пресс-форма малоотходная и способ получения деталей с ее помощью. Содержание работ по ремонту механической части. Разработка предложений по модернизации и усовершенствованию.

    курсовая работа , добавлен 22.12.2014

    Понятие и основные этапы процесса сращивания кабелей, способы и принципы его реализации. Последовательность работ при холодном способе сращивания кабелей с применением компаунда К115Н или К-15, путем свободного обогрева с последующей вулканизацией.

    реферат , добавлен 12.12.2009

    Назначение, устройство, принцип действия червячного редуктора с верхним расположением червяка. Химический состав и свойства стали 20Х. Измерительные инструменты, применяемые при ремонте. Техника безопасности при ремонте технологического оборудования.

    дипломная работа , добавлен 28.04.2013

    Технология производства топливных гранул и брикетов, древесного угля, щепы, дров. Биогаз, биоэтанол, биодизель: особенности изготовления и направления практического использования, необходимое оборудование и материалы, перспективы использования в Коми.

    курсовая работа , добавлен 28.10.2013

    Основные технологии переработки автомобильных покрышек и резинотехнических изделий. Возможные способы применения резиновой крошки. Области применения корда. Перечень оборудования для переработки покрышек методом пиролиза и механическим способом.