Проект-презентация "Теорема Пифагора и способы её доказательства". Презентация на тему теорема пифагора Презентация на тему доказательство теоремы пифагора

Слайд 1

Теорема Пифагора
"Заслугой первых греческих математиков, таких как Фалес, Пифагор и пифагорейцы, является не открытие математики, но ее систематизация и обоснование. В их руках вычислительные рецепты, основанные на смутных представлениях, превратились в точную науку."

Слайд 2

Слайд 3

История теоремы
Исторический обзор начнем с древнего Китая. Здесь особое внимание привлекает математическая книга Чупей. В этом сочинении так говорится о пифагоровом треугольнике со сторонами 3, 4 и 5: "Если прямой угол разложить на составные части, то линия, соединяющая концы его сторон, будет 5, когда основание есть 3, а высота 4". В этой же книге предложен рисунок, который совпадает с одним из чертежей индусской геометрии Басхары.

Слайд 4

Кантор (крупнейший немецкий историк математики) считает, что равенство 3 ² + 4 ² = 5² было известно уже египтянам еще около 2300 г. до н. э., во времена царя Аменемхета I (согласно папирусу 6619 Берлинского музея). По мнению Кантора гарпедонапты, или "натягиватели веревок", строили прямые углы при помощи прямоугольных треугольников со сторонами 3, 4 и 5.

Слайд 5

Очень легко можно воспроизвести их способ построения. Возьмем веревку длиною в 12 м. и привяжем к ней по цветной полоске на расстоянии 3м. от одного конца и 4 метра от другого. Прямой угол окажется заключенным между сторонами длиной в 3 и 4 метра. Гарпедонаптам можно было бы возразить, что их способ построения становиться излишним, если воспользоваться, например, деревянным угольником, применяемым всеми плотниками. И действительно, известны египетские рисунки, на которых встречается такой инструмент, например рисунки, изображающие столярную мастерскую.

Слайд 6

Несколько больше известно о теореме Пифагора у вавилонян. В одном тексте, относимом ко времени Хаммураби, т. е. к 2000 г. до н. э., приводится приближенное вычисление гипотенузы прямоугольного треугольника. Отсюда можно сделать вывод, что в Двуречье умели производить вычисления с прямоугольными треугольниками, по крайней мере в некоторых случаях. Основываясь, с одной стороны, на сегодняшнем уровне знаний о египетской и вавилонской математике, а с другой-на критическом изучении греческих источников,Ван-дер-Варден (голландский математик) сделал следующий вывод:

Слайд 7

Формулировка теоремы
« Доказать, что квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на катетах» « Площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на его катетах».
Во времена Пифагора теорема звучала так:
или

Слайд 8

Современная формулировка
« В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов».

Слайд 9

Доказательства теоремы
Существует около 500 различных доказательств этой теоремы (геометрических, алгебраических, механических и т.д.).

Слайд 10

Самое простое доказательство
Рассмотрим квадрат, показанный на рисунке. Сторона квадрата равна a + c.
c
a

Слайд 11

В одном случае (слева) квадрат разбит на квадрат со стороной b и четыре прямоугольных треугольника с катетами a и c.
a
c
a
c
В другом случае (справа) квадрат разбит на два квадрата со сторонами a и c и четыре прямоугольных треугольника с катетами a и c.
a
c
Таким образом, получаем, что площадь квадрата со стороной b равна сумме площадей квадратов со сторонами a и c.

Слайд 12

Доказательство Евклида
Дано: ABC-прямоугольный треугольник Доказать: SABDE=SACFG+SBCHI

Слайд 13

Доказательство:
Пусть ABDE-квадрат, построенный на гипотенузе прямоугольного треугольника ABC, а ACFG и BCHI-квадраты, построенные на его катетах. Опустим из вершины C прямого угла перпендикуляр CP на гипотенузу и продолжим его до пересечения со стороной DE квадрата ABDE в точке Q; соединим точки C и E, B и G.

Слайд 14

Очевидно, что углы CAE=GAB(=A+90°); отсюда следует, что треугольники ACE и AGB(закрашенные на рисунке) равны между собой (по двум сторонам и углу, заключённому между ними). Сравним далее треугольник ACE и прямоугольник PQEA; они имеют общее основание AE и высоту AP, опущенную на это основание, следовательно SPQEA=2SACE Точно так же квадрат FCAG и треугольник BAG имеют общее основание GA и высоту AC; значит, SFCAG=2SGAB
Отсюда и из равенства треугольников ACE и GBA вытекает равновеликость прямоугольника QPBD и квадрата CFGA; аналогично доказывается и равновеликость прямоугольника QPAE и квадрата CHIB. А отсюда, следует, что квадрат ABDE равновелик сумме квадратов ACFG и BCHI, т.е. теорема Пифагора.

Слайд 15

Алгебраическое доказательство
Дано: ABC-прямоугольный треугольник Доказать: AB2=AC2+BC2
Доказательство: 1) Проведем высоту CD из вершины прямого угла С. 2) По определению косинуса угла соsА=AD/AC=AC/AB, отсюда следует AB*AD=AC2. 3) Аналогично соsВ=BD/BC=BC/AB, значит AB*BD=BC2. 4) Сложив полученные равенства почленно, получим: AC2+BC2=АВ*(AD + DB) AB2=AC2+BC2. Что и требовалось доказать.

Слайд 16

Геометрическое доказательство
Дано: ABC-прямоугольный треугольник Доказать: BC2=AB2+AC2
Доказательство: 1) Построим отрезок CD равный отрезку AB на продолжении катета AC прямоугольного треугольника ABC. Затем опустим перпендикуляр ED к отрезку AD, равный отрезку AC, соединим точки B и E. 2) Площадь фигуры ABED можно найти, если рассматривать её как сумму площадей трёх треугольников:
SABED=2*AB*AC/2+BC2/2 3) Фигура ABED является трапецией, значит, её площадь равна: SABED= (DE+AB)*AD/2. 4) Если приравнять левые части найденных выражений, то получим: AB*AC+BC2/2=(DE+AB)(CD+AC)/2 AB*AC+BC2/2= (AC+AB)2/2 AB*AC+BC2/2= AC2/2+AB2/2+AB*AC BC2=AB2+AC2. Это доказательство было опубликовано в 1882 году Гэрфилдом.

Слайд 17

Значение теоремы Пифагора
Теорема Пифагора- это одна из самых важных теорем геометрии. Значение её состоит в том, что из неё или с её помощью можно вывести большинство теорем геометрии.

Слайд 18

В средние века теорема Пифагора, magister matheseos, определяла границу если не наибольших возможных, то по крайней мере хороших математических знаний. Характерный чертёж теоремы Пифагора, который ныне иногда превращается школьниками, например, в облаченного в мантию профессора (рис. 7, 8) или в человечка в цилиндре (рис. 9) и т.п., в те времена всеобщей страсти к символам нередко употреблялся как символ математики. Столь же часто мы встречаемся с «Пифагором» в средневековой живописи, мозаике, геральдике.

Теорема Пифагора. История возникновения и различные способы доказательства.


  • Пифагор Самосский (др.-греч. Πυθαγόρας ὁ Σάμιος ; 570 - 490 гг. до н. э.) - древнегреческий философ, математик и мистик, создатель религиозно-философской школы пифагорейцев.

  • Родители – Мнесарх и Партенида с Самоса
  • В 18-летнем возрасте отправился в путешествие в Египет, Вавилон
  • Вернулся на родину в 56 лет
  • В греческой колонии Кротоне в Южной Италии основал свою школу
  • Был женат на своей ученице Феано, имел сына и дочь.

Пифогорейская школа.

Условия приёма в школу Пифагора:

  • отказаться от личной собственности в пользу союза
  • не проливать крови
  • не употреблять мясной пищи
  • беречь тайну учения своего учителя
  • не обучать других за вознаграждение

  • Умел разговаривать с птицами и животными
  • Повелевал духами и делал предсказания
  • Способен раздваиваться
  • Исцелял людей
  • Перевоплощённый бог Аполлон
  • Имел золотое бедро

  • Великая наука жить счастливо состоит в том, чтобы жить только в настоящем.
  • Дружба есть равенство.
  • Жизнь подобна игрищам: иные приходят на них состязаться, иные торговать, а самые счастливые - смотреть.
  • Из двух человек одинаковой силы сильнее тот, кто прав.

Музыка и Пифагор

  • Пифагор и его последователи рассчитали т.н. пифагоров строй - математическое выражение интервалов между звуками гаммы (т.н. «лидийской» гаммы).

  • Теорема Пифагора - одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника.

  • В древнекитайской книге Чжоу би суань цзин говорится о пифагоровом треугольнике со сторонами 3, 4 и 5. В этой же книге предложен рисунок, который совпадает с одним из чертежей индусской геометрии Басхары.

  • Мориц Кантор (крупнейший немецкий историк математики) считает, что равенство 3 ² + 4 ² = 5² было известно уже египтянам ещё около 2300 г. до н. э. , во времена царя Аменемхета I (согласно папирусу 6619 Берлинского музея). По мнению Кантора, гарпедонапты, или «натягиватели верёвок», строили прямые углы при помощи прямоугольных треугольников со сторонами 3, 4 и 5.

  • Несколько больше известно о теореме Пифагора у вавилонян. В одном тексте, относимом ко времени Хаммурапи, то есть к 2000 году до н. э. , приводится приближённое вычисление гипотенузы равнобедренного прямоугольного треугольника . Отсюда можно сделать вывод, что в Двуречье умели производить вычисления с прямоугольными треугольниками, по крайней мере в некоторых случаях.
  • Основываясь, с одной стороны, на сегодняшнем уровне знаний о египетской и вавилонской математике, а с другой - на критическом изучении греческих источников, Ван-дер-Варден (голландский математик) сделал вывод о большой вероятности того, что теорема о квадрате гипотенузы была известна в Вавилоне уже около XVIII века до н. э.

  • Согласно комментарию Прокла к Евклиду, Пифагор использовал алгебраические методы, чтобы находитьпифагоровы тройки. Однако Прокл писал, что не существует явного упоминания, относящегося к периоду продолжительностью 5 веков после смерти Пифагора, что Пифагор был автором теоремы.
  • Однако, когда авторы, такие как Плутарх иЦицерон, пишут о теореме Пифагора, они пишут так, как будто авторство Пифагора было широко известным и несомненным.«Принадлежит ли эта формула лично перу Пифагора…, но мы можем уверенно считать, что она принадлежит древнейшему периоду пифагорейской математики».

  • По преданию, Пифагор отпраздновал открытие своей теоремы гигантским пиром, заклав на радостях сотню быков.Приблизительно в 400 г. до н. э., согласно Проклу, Платон дал метод нахождения пифагоровых троек, сочетающий алгебру и геометрию. Приблизительно в 300 г. до н. э. в «Началах» Евклида появилось старейшее аксиоматическое доказательство теоремы Пифагора.

Формулировка теоремы

Во времена Пифагора теорема звучала так:

  • « Доказать, что квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на катетах»
  • « Площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на его катетах».

Формулировка теоремы

  • «

Формулировка теоремы

  • В Geometria Culmonensis (около 1400 г.) в переводе теорема читается так: "Итак, площадь квадрата, измеренного по длинной стороне, столь же велика, как у двух квадратов, которые измерены по двум сторонам его, примыкающим к прямому углу".
  • В первом русском переводе евклидовых "Начал", сделанном Ф. И. Петрушевским, теорема Пифагора изложена так: "В прямоугольных треугольниках квадрат из стороны, противолежащей прямому углу, равен сумме квадратов из сторон, содержащих прямой угол".

Формулировка теоремы

  • « У Евклида эта теорема гласит (дословный перевод): "В прямоугольном треугольнике квадрат стороны, натянутой над прямым углом, равен квадратам на сторонах, заключающих прямой угол".»
  • Латинский перевод арабского текста Аннаирици (около 900 г. до н. э.) в переводе на русский гласит:"Во всяком прямоугольном треугольнике квадрат, образованный на стороне, натянутой над прямым углом, равен сумме двух квадратов, образованных на двух сторонах, заключающих прямой угол".

Современная формулировка

« В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов».


Доказательства теоремы

Существует около 500 различных доказательств этой теоремы (геометрических, алгебраических, механических и т.д.).


Рассмотрим квадрат, показанный на рисунке. Сторона квадрата равна a + c .


В одном случае (слева) квадрат разбит на квадрат со стороной b a и c .

В другом случае (справа) квадрат разбит на два квадрата со сторонами a и c и четыре прямоугольных треугольника с катетами a и c .

Таким образом, получаем, что площадь квадрата со стороной b равна сумме площадей квадратов со сторонами a и c .


Дано:

ABC -прямоугольный треугольник

Доказать:

S ABDE =S ACFG +S BCHI


Доказательство:

Пусть ABDE -квадрат, построенный на гипотенузе прямоугольного треугольника ABC , а ACFG и BCHI -квадраты, построенные на его катетах. Опустим из вершины C прямого угла перпендикуляр CP на гипотенузу и продолжим его до пересечения со стороной DE квадрата ABDE в точке Q ; соединим точки C и E , B и G .


Очевидно, что углы CAE=GAB(=A+90°) ; отсюда следует, что треугольники ACE и AGB (закрашенные на рисунке) равны между собой (по двум сторонам и углу, заключённому между ними). Сравним далее треугольник ACE и прямоугольник PQEA ; они имеют общее основание AE и высоту AP , опущенную на это основание, следовательно

S PQEA = 2S ACE

Точно так же квадрат FCAG и треугольник BAG имеют общее основание GA и высоту AC; значит, S FCAG =2S GAB

Отсюда и из равенства треугольников ACE и GBA вытекает равновеликость прямоугольника QPBD и квадрата CFGA; аналогично доказывается и равновеликость прямоугольника QPAE и квадрата CHIB. А отсюда, следует, что квадрат ABDE равновелик сумме квадратов ACFG и BCHI, т.е. теорема Пифагора.


Дано: ABC -прямоугольный треугольник

Доказать: AB 2 =AC 2 +BC 2

Доказательство:

1) Проведем высоту CD из вершины прямого угла С . 2) По определению косинуса угла соsА=AD/AC=AC/AB , отсюда следует

AB*AD=AC 2 .

3) Аналогично соsВ=BD/BC=BC/AB , значит

AB*BD=BC 2 .

4) Сложив полученные равенства почленно, получим:

AC 2 +BC 2 = АВ *(AD + DB)

AB 2 =AC 2 +BC 2 . Что и требовалось доказать.


Дано: ABC -прямоугольный треугольник

Доказать: BC 2 =AB 2 +AC 2

Доказательство:

1) Построим отрезок CD равный отрезку AB на продолжении катета AC прямоугольного треугольника ABC . Затем опустим перпендикуляр ED к отрезку AD , равный отрезку AC , соединим точки B и E . 2) Площадь фигуры ABED можно найти, если рассматривать её как сумму площадей трёх треугольников:

S ABED =2*AB*AC/2+BC 2 /2

3) Фигура ABED является трапецией, значит, её площадь равна:

S ABED = (DE+AB)*AD/2.

4) Если приравнять левые части найденных выражений, то получим:

AB*AC+BC 2 /2=(DE+AB)(CD+AC)/2

AB*AC+BC 2 /2= (AC+AB) 2 /2

AB*AC+BC 2 /2= AC 2 /2+AB 2 /2+AB*AC

BC 2 =AB 2 +AC 2 .


  • Пусть ABC есть прямоугольный треугольник с прямым углом C . Проведём высоту из C и обозначим её основание через H . Треугольник ACH подобен треугольнику ABC по двум углам. Аналогично, треугольник CBH подобен ABC .

Введя обозначения

получаем

что эквивалентно


сложив получаем


Значение теоремы Пифагора

Теорема Пифагора- это одна из самых важных теорем геометрии. Значение её состоит в том, что из неё или с её помощью можно вывести большинство теорем геометрии.



Чернов Максим

Проект по геометрии, оформленный в виде презентации на тему "Теорема Пифагора и различные способы её доказательства"

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Теорема Пифагора и различные способы её доказательства Выполнил: Чернов Максим 8А

Цель проекта: Изложить теорему Пифагора, представить разные способы её доказательства.

История В древнекитайской книге Чжоу би суань цзин говорится о пифагоровом треугольнике со сторонами 3, 4 и 5. В этой же книге предложен рисунок, который совпадает с одним из чертежей индусской геометрии Басхары. Мориц Кантор (крупнейший немецкий историк математики) считает, что равенство 3 ² + 4 ² = 5² было известно уже египтянам ещё около 2300 г. до н.э., во времена царя Аменемхета I (согласно папирусу 6619 Берлинского музея). По мнению Кантора, гарпедонапты, или « натягиватели верёвок», строили прямые углы при помощи прямоугольных треугольников со сторонами 3, 4 и 5. Очень легко можно воспроизвести их способ построения. Возьмём верёвку длиною в 12 м и привяжем к ней по цветной полоске на расстоянии 3 м от одного конца и 4 метра от другого. Прямой угол окажется заключённым между сторонами длиной в 3 и 4 метра. Гарпедонаптам можно было бы возразить, что их способ построения становится излишним, если воспользоваться, например, деревянным угольником, применяемым всеми плотниками. И действительно, известны египетские рисунки, на которых встречается такой инструмент, - например, рисунки, изображающие столярную мастерскую. Несколько больше известно о теореме Пифагора у вавилонян. В одном тексте, относимом ко времени Хаммурапи, то есть к 2000 г. до н.э., приводится приближённое вычисление гипотенузы равнобедренного прямоугольного треугольника. Отсюда можно сделать вывод, что в Двуречье умели производить вычисления с прямоугольными треугольниками, по крайней мере в некоторых случаях. Основываясь, с одной стороны, на сегодняшнем уровне знаний о египетской и вавилонской математике, а с другой - на критическом изучении греческих источников, Ван-дер- В арден (голландский математик) сделал вывод о большой вероятности того, что теорема о квадрате гипотенузы была известна в Вавилоне уже около XVIII века до н. э. Согласно комментарию Прокла к Евклиду, Пифагор (годами жизни которого принято считать 570-490 гг. до н. э.) использовал алгебраические методы, чтобы находить пифагоровы тройки. Однако Прокл писал между 410 и 485 гг. н. э. Томас Литтл Хит считал, что не существует явного упоминания, относящегося к периоду продолжительностью 5 веков после смерти Пифагора, что Пифагор был автором теоремы. Однако, когда авторы, такие как Плутарх и Цицерон, пишут о теореме Пифагора, они пишут так, как будто авторство Пифагора было широко известным и несомненным.«Принадлежит ли эта формула лично перу Пифагора…, но мы можем уверенно считать, что она принадлежит древнейшему периоду пифагорейской математики ».По преданию, Пифагор отпраздновал открытие своей теоремы гигантским пиром, заклав на радостях сотню быков. Приблизительно в 400 г. до н. э., согласно Проклу, Платон дал метод нахождения пифагоровых троек, сочетающий алгебру и геометрию. Приблизительно в 300 г. до н. э. в « Началах» Евклида появилось старейшее аксиоматический доказательство теоремы Пифагора.

Формулировки: Геометрическая формулировка: Изначально теорема была сформулирована следующим образом: В прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах. Алгебраическая формулировка: В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов. То есть, обозначив длину гипотенузы треугольника через, а длины катетов через a и b: a2+b2=c2 Обе формулировки теоремы эквивалентны, но вторая формулировка более элементарна, она не требует понятия площади. То есть второе утверждение можно проверить, ничего не зная о площади и измерив только длины сторон прямоугольного треугольника.

Доказательства На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы. Вероятно, теорема Пифагора является единственной теоремой со столь внушительным числом доказательств. Такое многообразие можно объяснить лишь фундаментальным значением теоремы для геометрии. Разумеется, концептуально все их можно разбить на малое число классов. Самые известные из них: доказательства методом площадей, аксиоматические и экзотические доказательства (например, с помощью дифференциальных уравнений).

Через подобные треугольники Следующее доказательство алгебраической формулировки - наиболее простое из доказательств, строящихся напрямую из аксиом. В частности, оно не использует понятие площади фигуры. Пусть ABC есть прямоугольный треугольник с прямым углом C . Проведём высоту из C и обозначим её основание через H . Треугольник ACH подобен треугольнику ABC по двум углам. Аналогично, треугольник CBH подобен ABC . Введя обозначения получаем Что эквивалентно Сложив, получаем или, что и требовалось доказать

Доказательства методом площадей Ниже приведённые доказательства, несмотря на их кажущуюся простоту, вовсе не такие простые. Все они используют свойства площади, доказательства которых сложнее доказательства самой теоремы Пифагора Доказательство через равнодополняемость Расположим четыре равных прямоугольных треугольника так, как показано на рисунке 1. Четырёхугольник со сторонами c является квадратом, так как сумма двух острых углов 90°, а развёрнутый угол - 180°. Площадь всей фигуры равна, с одной стороны, площади квадрата со стороной (a+b), а с другой стороны, сумме площадей четырёх треугольников и площади внутреннего квадрата. Что и требовалось доказать. .

Доказательство Евклида Идея доказательства Евклида состоит в следующем: попробуем доказать, что половина площади квадрата, построенного на гипотенузе, равна сумме половин площадей квадратов, построенных на катетах, а тогда и площади большого и двух малых квадратов равны. Рассмотрим чертеж слева. На нём мы построили квадраты на сторонах прямоугольного треугольника и провели из вершины прямого угла С луч s перпендикулярно гипотенузе AB, он рассекает квадрат ABIK, построенный на гипотенузе, на два прямоугольника - BHJI и HAKJ соответственно. Оказывается, что площади данных прямоугольников в точности равны площадям квадратов, построенных на соответствующих катетах. Попытаемся доказать, что площадь квадрата DECA равна площади прямоугольника AHJK. Для этого воспользуемся вспомогательным наблюдением: Площадь треугольника с той же высотой и основанием, что и данный прямоугольник, равна половине площади заданного прямоугольника. Это следствие определения площади треугольника как половины произведения основания на высоту. Из этого наблюдения вытекает, что площадь треугольника ACK равна площади треугольника AHK (не изображённого на рисунке), которая, в свою очередь, равна половине площади прямоугольника AHJK. Докажем теперь, что площадь треугольника ACK также равна половине площади квадрата DECA. Единственное, что необходимо для этого сделать, - это доказать равенство треугольников ACK и BDA (так как площадь треугольника BDA равна половине площади квадрата по указанному выше свойству). Равенство это очевидно: треугольники равны по двум сторонам и углу между ними. Именно - AB=AK, AD=AC - равенство углов CAK и BAD легко доказать методом движения: повернём треугольник CAK на 90° против часовой стрелки, тогда очевидно, что соответствующие стороны двух рассматриваемых треугольников совпадут (ввиду того, что угол при вершине квадрата - 90°). Рассуждение о равенстве площадей квадрата BCFG и прямоугольника BHJI совершенно аналогично. Тем самым мы доказали, что площадь квадрата, построенного на гипотенузе, слагается из площадей квадратов, построенных на катетах. Идея данного доказательства дополнительно проиллюстрирована с помощью анимации, расположенной выше. Данное доказательство также получило название «Пифагоровы штаны».

Доказательство Леонардо да Винчи Главные элементы доказательства - симметрия и движение. Рассмотрим чертёж, как видно из симметрии, отрезок рассекает квадрат на две одинаковые части (так как треугольники и равны по построению). Пользуясь поворотом на 90 градусов против часовой стрелки вокруг точки, мы усматриваем равенство заштрихованных фигур и. Теперь ясно, что площадь заштрихованной нами фигуры равна сумме половин площадей маленьких квадратов (построенных на катетах) и площади исходного треугольника. С другой стороны, она равна половине площади большого квадрата (построенного на гипотенузе) плюс площадь исходного треугольника. Таким образом, половина суммы площадей маленьких квадратов равна половине площади большого квадрата, а следовательно сумма площадей квадратов, построенных на катетах равна площади квадрата, построенного на гипотенузе.

Значение теоремы Пифагора Теорема Пифагора – одна из главных и, можно сказать, самая главная теорема геометрии. Значение её состоит в том, что из неё или с помощью можно вывести большинство теорем геометрии.

Спасибо за внимание!

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

2 слайд

Описание слайда:

План Введение Биография Пифагора Простейшее доказательство теоремы Древнекитайское доказательство Доказательство Евклида Доказательство теоремы Пифагора Еще одно алгебраическое доказательство Египетский треугольник Заключение Список литературы Авторы

3 слайд

Описание слайда:

Введение Трудно найти человека, у которого имя Пифагора не ассоциировалось бы с теоремой Пифагора. Пожалуй, даже те, кто в своей жизни навсегда распрощался с математикой, сохраняют воспоминания о «пифагоровых штанах» - квадрате на гипотенузе, равновеликом двум квадратам на катетах. Причина такой популярности теоремы Пифагора триедина: это простота - красота - значимость. Теорема Пифагора имеет огромное значение: она применяется в геометрии буквально на каждом шагу, и тот факт, что существует около 500 различных доказательств этой теоремы (геометрических, алгебраических, механических и т.д.), свидетельствует о гигантском числе ее конкретных реализаций.

4 слайд

Описание слайда:

Биография Пифагора Пифагор родился около 570 г. до н.э. на острове Самосе. В юности Пифагор отправляется в Милет, где встречается с ученым Фалесом, который советует ему отправится за знаниями в Египет. В 548 г. до н.э. Пифагор прибыл в самосскую колонию. Изучив язык и религию египтян, он уезжает в Мемфис. Жрецы не спешили раскрывать Пифагору свои тайны, предлагая ему сложные испытания, но Пифагор преодолел их все. Научившись всему, что дали ему жрецы, он двинулся на родину в Элладу. Однако, проделав часть пути, его захватил в плен царь Вавилона. Вавилонская математика была более развитой, чем египетская, и Пифагору было чему поучится, позже он сбежал на родину. На родине Пифагор учредил нечто вроде религиозно-этического братства. ...Прошло 20 лет. Однажды к Пифагору приходит Килон, человек богатый, но злой, желая спьяну вступить в братство. Получив отказ, он поджигает дом Пифагора. При пожаре пифагорейцы спасли жизнь своему учителю ценой своей, после чего Пифагор покончил жизнь самоубийством.

5 слайд

Описание слайда:

Теорема Пифагора В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов c²=a²+b²

6 слайд

Описание слайда:

Простейшее доказательство “Квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на его катетах” Рассмотрим равнобедренный прямоугольный треугольник (с него и начиналась теорема). Достаточно посмотреть на мозаику равнобедренных прямоугольных треугольников. Для ABC квадрат, построенный на гипотенузе АС, содержит 4 исходных треугольника, а квадраты, построенные на катетах, - по 2.

7 слайд

Описание слайда:

Древнекитайское доказательство Рассмотрим рис.1: а+b - сторона внешнего квадрата, с - сторона внутреннего. Если вырезать внутренний квадрат (рис.1) со стороной с и уложить части его как показано на рис.2, получим: c²=a²+b²

8 слайд

Описание слайда:

Доказательство Евклида Дано: ∆АВС-прямоугольный, а,b-катеты, с-гипотенуза, ABHF, AGKC, BCED-квадраты Доказать: c²=a²+b² Доказательство: 1. ∆ABD=∆FBC(по 2-м сторонам и углу м/у ними) BC=BD FB=AB ∟DBА=90ْ +∟ABC=∟FBC 2. S∆ABD=1∕2SBYLD BD- общее основание, LD- общая высота 3. S∆FBC = 1∕2 SABFY (аналогично 2) 4. SABFH = SBYLD, т.к. ∆ABD=∆FBC 5. SACKG= SYCEL , т.к. ∆BCK=∆ACE(аналогично 1-4) 6. b²+a²=c² => c²=a²+b².

9 слайд

Описание слайда:

Доказательство теоремы Пифагора Дано: треугольник АВС - прямоугольный a, b - катеты с-гипотенуза Доказать: c2=a2+b2 Доказательство: 1. (a + b)2 = 4(1/2ab) + c2 2. a2 + 2ab + b2 = 2ab + c2 3. a2 + b2 = c2

10 слайд

Описание слайда:

Еще одно алгебраическое доказательство Дано: ∆АВС – прямоугольный, ∟С=90º Доказать: АС²+СВ²=АВ² Доказательство: 1.CD-высота. 2. cosА=AD/AC=AC/AB =>AD∙AB=AC² 3. cosB=BD/BC=BC/AB =>AB∙BD=BC² 4. Получим: AD∙AB+AB∙BD=AC²+BC² AB(AD+BD)=AC²+BC² AB²=AC²+BC²

11 слайд

Описание слайда:

Пифагоровы треугольники Прямоугольные треугольники, у которых длины сторон выражаются целыми числами, называются пифагоровыми треугольниками: 3, 4 и 5 5, 12 и 13 8, 15 и 17 7, 24 и 25