Поток вектора электрической индукции. Теорема гаусса. Теорема Гаусса для магнитной индукции

Введем понятие потока вектора электрической индукции. Рассмотрим бесконечно малую площадку. В большинстве случаев необходимо знать не только величину площадки, но и ее ориентацию в пространстве. Введем понятие вектор-площадка. Условимся под вектором-площадкой понимать вектор, направленный перпендикулярно площадке и численно равной величине площадки.

Рисунок 1 – К определению вектора – площадки

Назовем потоком вектора че­рез площадку
скалярное произведение векторови
. Таким образом,

Поток вектора через произвольную поверхностьнаходится интегрированием всех элементарных потоков

(4)

Если поле однородно и плоская поверхность расположена перпен­дикулярно к полю, то:

. (5)

Приведенное выражение определяет число силовых линии, пронизывающих площадку в единицу времени.

Теорема Остроградского-Гаусса. Дивергенция напряженности электрического поля

Поток вектора электрической индукции сквозь произвольную замкнутую по­верхность равен алгебраической сумме свободных электрических зарядов, охватываемых этой поверхностью

(6)

Выражение (6) представляет собой теорему О-Г в интегральном виде. Теорема 0-Г оперирует с интегральным (суммарным) эффектом, т.е. если
то неизвестно, означает ли это отсутствие зарядов во всех точках исследуемой части пространства, или, то, что сумма положительных и отрицательных зарядов, расположенных в разных точках этого пространства равны нулю.

Для нахождения расположенных зарядов и их величины по заданному полю необходимо соотношение, связывающее вектор электрической индукции в данной точке с зарядом в той же точке.

Предположим, что нам нужно определить наличие заряда в точ­ке а (рис.2)

Рисунок 2 – К расчету дивергенции вектора

Применим теорему О-Г. Поток вектора электрической индукции через произвольную поверхность, ограничивающую объем, в которой находится точка а , равен

Алгебраическую сумму зарядов в объеме можно записать в виде объемного интеграла

(7)

где - заряд, отнесенный к единице объема;

- элемент объема.

Для получения связи между полем и зарядом в точке а будем уменьшать объем, стягивая поверхность к точке а . При этом разделим обе части нашего равенства на величину . Переходя к пределу, получим:

.

Правая часть полученного выражения является по определению объемной плотностью заряда в рассмотренной точке пространства. Левая часть представляет собой предел отношения потока вектора электрической индукции через замкнутую по­верхность к объему, ограниченному этой поверхностью, когда объем стремится к нулю. Эта скалярная величина является важной характеристикой электрического поля и носит название дивергенции вектора .

Таким образом:

,

следовательно

, (8)

где - объемная плотность заряда.

При помощи этого соотношения просто решается обратная задача электростатики, т.е. нахождение распределенных зарядов по известному полю.

Если вектор задан, значит известны его проекции
,
,
на координатные оси как функции координат и для вычисления распределенной плотности зарядов, создавших заданное поле, оказывается достаточно найти сумму трех частных производных этих проекций по соответствующим переменным. В тех точках для которых
зарядов нет. В точках где
положительна, имеется положительный заряд с объемной плотностью, равной
, а в тех точках где
будет иметь отрицательное значение, находится отрицательный заряд, плотность которого также определяется значением дивергенции.

Выражение (8) представляет теорему 0-Г в дифференциальной форме. В такой форме теорема показывает, что источниками электрического поля является свободные электрические заряды; силовые линии вектора электрической индукции начинаются и заканчиваются соответственно на положительных и отрицательных зарядах.

Цель урока: Теорема Остроградского–Гаусса была установлена русским математиком и механиком Михаилом Васильевичем Остроградским в виде некоторой общей математической теоремы и немецким математиком Карлом Фридрихом Гауссом. Данная теорема может быть использована при изучении физики на профильном уровне, так как позволяет более рационально производить расчёты электрических полей.

Вектор электрической индукции

Для вывода теоремы Остроградского–Гаусса необходимо ввести такие важные вспомогательные понятия, как вектор электрической индукции и поток этого вектора Ф.

Известно, что электростатическое поле часто изображают при помощи силовых линий. Предположим, что мы определяем напряжённость в точке, лежащей на границе раздела двух сред: воздуха(=1) и воды (=81). В этой точке при переходе из воздуха в воду напряжённость электрического поля согласно формуле уменьшится в 81 раз. Если пренебречь проводимостью воды, то во столько же раз уменьшится число силовых линий. При решении различных задач на расчёт полей из-за прерывности вектора напряжённости на границе раздела сред и на диэлектриках создаются определённые неудобства. Чтобы избежать их, вводится новый вектор , который называется вектором электрической индукции:

Вектор электрической индукции равен произведению вектора на электрическую постоянную и на диэлектрическую проницаемость среды в данной точке.

Очевидно, что при переходе через границу двух диэлектриков число линий электрической индукции не изменяется для поля точечного заряда (1).

В системе СИ вектор электрической индукции измеряется в кулонах на квадратный метр (Кл/м 2). Выражение (1) показывает, что численное значение вектора не зависит от свойств среды. Поле вектора графически изображается аналогично полю напряжённости (например, для точечного заряда см. рис.1). Для поля вектора имеет место принцип суперпозиции:

Поток электрической индукции

Вектор электрической индукции характеризует электрическое поле в каждой точке пространства. Можно ввести ещё одну величину, зависящую от значений вектора не в одной точке, а во всех точках поверхности, ограниченной плоским замкнутым контуром.

Для этого рассмотрим плоский замкнутый проводник (контур) с площадью поверхности S, помещённый в однородное электрическое поле. Нормаль к плоскости проводника составляет угол с направлением вектора электрической индукции (рис. 2).

Потоком электрической индукции через поверхность S называют величину, равную произведению модуля вектора индукции на площадь S и на косинус угла между вектором и нормалью :

Вывод теоремы Остроградского–Гаусса

Эта теорема позволяет найти поток вектора электрической индукции через замкнутую поверхность, внутри которой находятся электрические заряды.

Пусть вначале один точечный заряд q помещён в центр сферы произвольного радиуса r 1 (рис. 3). Тогда ; . Вычислим полный поток индукции проходящий через всю поверхность этой сферы: ; (). Если возьмём сферу радиуса , то также Ф = q. Если проведём сферу , не охватывающую заряд q, то полный поток Ф = 0 (так как каждая линия войдёт в поверхность, а другой раз выйдет из неё).

Таким образом, Ф = q, если заряд расположен внутри замкнутой поверхности и Ф = 0, если заряд расположен вне замкнутой поверхности. Поток Ф от формы поверхности не зависит. Он также не зависит от расположения зарядов внутри поверхности. Это значит, что полученный результат справедлив не только для одного заряда, но и для какого угодно числа произвольно расположенных зарядов, если только подразумевать под q алгебраическую сумму всех зарядов, находящихся внутри поверхности.

Теорема Гаусса: поток электрической индукции через любую замкнутую поверхность равен алгебраической сумме всех зарядов, находящихся внутри поверхности: .

Из формулы видно, что размерность электрического потока такая же, как и электрического заряда. Поэтому единицей потока электрической индукции служит кулон (Кл).

Примечание: если поле неоднородно и поверхность, через которую определяют поток, не является плоскостью, то эту поверхность можно разбить на бесконечно малые элементы ds и каждый элемент считать плоским, а поле возле него однородным. Поэтому для любого электрического поля поток вектора электрической индукции через элемент поверхности есть: =. В результате интегрирования полный поток через замкнутую поверхность S в любом неоднородном электрическом поле равен: , где q – алгебраическая сумма всех зарядов, окружённых замкнутой поверхностью S. Выразим последнее уравнение через напряжённость электрического поля (для вакуума): .

Это одно из фундаментальных уравнений Максвелла для электромагнитного поля, записанное в интегральной форме. Оно показывает, что источником постоянного во времени электрического поля являются неподвижные электрические заряды.

Применение теоремы Гаусса

Поле непрерывно распределённых зарядов

Определим теперь с помощью теоремы Остроградского-Гаусса напряжённость поля для ряда случаев.

1. Электрическое поле равномерно заряженной сферической поверхности.

Сфера радиусом R. Пусть заряд +q равномерно распределён по сферической поверхности радиуса R. Распределение заряда по поверхности характеризуется поверхностной плотностью заряда (рис.4). Поверхностной плотностью заряда называют отношение заряда к площади поверхности, по которой он распределён. . В СИ .

Определим напряжённость поля:

а) вне сферической поверхности,
б) внутри сферической поверхности.

а) Возьмём точку А, отстоящую от центра заряженной сферической поверхности на расстоянии r>R. Проведём через неё мысленно сферическую поверхность S радиуса r, имеющую общий центр с заряженной сферической поверхностью. Из соображения симметрии очевидно, что силовые линии являются радиальными прямыми перпендикулярными к поверхности S и равномерно пронизывают эту поверхность, т.е. напряжённость по всех точках этой поверхности постоянна по величине. Применим теорему Остроградского-Гаусса к этой сферической поверхности S радиуса r. Поэтому полный поток через сферу равен N = E? S; N=E. С другой стороны . Приравниваем: . Отсюда: при r>R.

Таким образом: напряжённость, создаваемая равномерно заряженной сферической поверхностью, вне её такая же, как если бы весь заряд находился в её центре (рис.5).

б) Найдём напряжённость поля в точках, лежащих внутри заряженной сферической поверхности. Возьмём точку В отстоящую от центра сферы на расстоянии . Тогда , E = 0 при r

2. Напряжённость поля равномерно заряженной бесконечной плоскости

Рассмотрим электрическое поле создаваемое бесконечной плоскостью, заряженной с плотностью , постоянной во всех точках плоскости. По соображениям симметрии можно считать, что линии напряжённости перпендикулярны к плоскости и направлены от неё в обе стороны (рис.6).

Выберем точку А, лежащую справа от плоскости и вычислим в этой точке, применяя теорему Остроградского-Гаусса. В качестве замкнутой поверхности выберем цилиндрическую поверхность таким образом, чтобы боковая поверхность цилиндра была параллельна силовым линиям, а его основания и параллельны плоскости и основание проходит через точку А (рис. 7). Рассчитаем поток напряжённости через рассматриваемую цилиндрическую поверхность. Поток через боковую поверхность равен 0, т.к. линии напряжённости параллельны боковой поверхности. Тогда полный поток складывается из потоков и проходящих через основания цилиндра и . Оба эти потока положительны =+; =; =; ==; N = 2 .

– участок плоскости лежащий внутри выбранной цилиндрической поверхности. Заряд внутри этой поверхности равен q.

Тогда ; – можно принять за точечный заряд) с точкой А. Для нахождения суммарного поля надо геометрически сложить все поля, создаваемые каждым элементом: ; .

Поток вектора напряженности электрического поля. Пусть небольшую площадку D S (рис.1.2) пересекают силовые линии электрического поля, направление которых составляет с нормалью n к этой площадке угол a . Полагая, что вектор напряженности Е не меняется в пределах площадки D S , определим поток вектора напряженности через площадку D S как

D F E = E D S cos a .(1.3)

Поскольку густота силовых линий равна численному значению напряжённости E , то количество силовых линий, пересекающих площадку D S , будет численно равно значению потока D F E через поверхность D S . Представим правую часть выражения (1.3) как скалярное произведение векторов E и D S = n D S , где n – единичный вектор нормали к поверхности D S . Для элементарной площадки dS выражение (1.3) принимает вид

d F E = E dS

Через всю площадку S поток вектора напряженности вычисляется как интеграл по поверхности

Поток вектора электрической индукции. Поток вектора электрической индукцииопределяется аналогично потоку вектора напряженности электрического поля

d F D = D dS

В определениях потоков заметна некоторая неоднозначность, связанная с тем, что для каждой поверхности можно задать две нормали противоположного направления. Для замкнутой поверхности положительной считается внешняя нормаль.

Теорема Гаусса. Рассмотрим точечный положительный электрический заряд q , находящийся внутри произвольной замкнутой поверхности S (рис. 1.3). Поток вектора индукции через элемент поверхности dS равен
(1.4)

Составляющую dS D = dS cos a элемента поверхности dS в направлении вектора индукции D рассматриваем как элемент сферической поверхности радиуса r , в центре которой расположен заряд q .

Учитывая, что dS D / r 2 равен элементарному телесному углу d w , под которым из точки нахождения заряда q виден элемент поверхности dS , преобразуем выражение (1.4) к виду d F D = q d w / 4 p , откуда после интегрирования по всему окружающему заряд пространству, т. е. в пределах телесного угла от 0 до 4 p , получим

F D = q .

Поток вектора электрической индукции через замкнутую поверхность произвольной формы равен заряду, заключенному внутри этой поверхности .

Если произвольная замкнутая поверхность S не охватывает точечный заряд q (рис. 1.4), то, построив коническую поверхность с вершиной в точке нахождения заряда, разделим поверхность S на две части: S 1 и S 2 . Поток вектора D через поверхность S найдем как алгебраическую сумму потоков через поверхности S 1 и S 2:

.

Обе поверхности из точки нахождения заряда q видны под одним телесным углом w . Поэтому потоки равны

Поскольку при вычислении потока через замкнутую поверхность используется внешняя нормаль к поверхности, легко видеть, что поток Ф 1D < 0, тогда как поток Ф 2D > 0. Суммарный поток Ф D = 0. Это означает, что поток вектора электрической индукции через замкнутую поверхность произвольной формы не зависит от зарядов, расположенных вне этой поверхности.

Если электрическое поле создаётся системой точечных зарядов q 1 , q 2 ,¼ , q n , которая охватывается замкнутой поверхностью S , то, в соответствии с принципом суперпозиции, поток вектора индукции через эту поверхность определяется как сумма потоков, создаваемых каждым из зарядов. Поток вектора электрической индукции через замкнутую поверхность произвольной формы равен алгебраической сумме зарядов, охваченныхэтой поверхностью :

Следует отметить, что заряды q i не обязательно должны быть точечными, необходимое условие - заряженная область должна полностью охватываться поверхностью. Если в пространстве, ограниченном замкнутой поверхностью S , электрический заряд распределен непрерывно, то следует считать, что каждый элементарный объём dV имеет заряд . В этом случае в правой части выражения (1.5) алгебраическое суммирование зарядов заменяется интегрированием по объёму, заключённому внутри замкнутой поверхности S :

(1.6)

Выражение (1.6) является наиболее общей формулировкой теоремы Гаусса : поток вектора электрической индукции через замкнутую поверхность произвольной формы равен суммарному заряду в объеме, охваченном этой поверхностью, и не зависит от зарядов, расположенных вне рассматриваемой поверхности . Теорему Гаусса можно записать и для потока вектора напряженности электрического поля:

.

Из теоремы Гаусса следует важное свойство электрического поля: силовые линии начинаются или заканчиваются только на электрических зарядах или уходят в бесконечность . Еще раз подчеркнем, что, несмотря на то, что напряжённость электрического поля E и электрическая индукция D зависят от расположения в пространстве всех зарядов, потоки этих векторов через произвольную замкнутую поверхность S определяются только теми зарядами, которые расположены внутри поверхности S .

Дифференциальная форма теоремы Гаусса. Отметим, чтоинтегральная форма теоремы Гаусса характеризует соотношения между источниками электрического поля (зарядами) и характеристиками электрического поля (напряженностью или индукцией) в объеме V произвольной, но достаточной для формирования интегральных соотношений, величины. Производя деление объема V на малые объемы V i , получим выражение

справедливое как в целом, так и для каждого слагаемого. Преобразуем полученное выражение следующим образом:

(1.7)

и рассмотрим предел, к которому стремится выражение в правой части равенства, заключенное в фигурных скобках, при неограниченном делении объема V . В математике этот предел называют дивергенцией вектора (в данном случае вектора электрической индукции D ):

Дивергенция вектора D в декартовых координатах:

Таким образом выражение (1.7) преобразуется к виду:

.

Учитывая, что при неограниченном делении сумма в левой части последнего выражения переходит в объемный интеграл, получим

Полученное соотношение должно выполняться для любого произвольно выбранного объема V . Это возможно лишь в том случае, если значения подынтегральных функций в каждой точке пространства одинаковы. Следовательно, дивергенция вектора D связана с плотностью заряда в той же точке равенством

или для вектора напряженности электростатического поля

Эти равенства выражают теорему Гаусса в дифференциальной форме .

Отметим, что в процессе перехода к дифференциальной форме теоремы Гаусса получается соотношение, которое имеет общий характер:

.

Выражение называется формулой Гаусса - Остроградского и связывает интеграл по объему от дивергенции вектора с потоком этого вектора сквозь замкнутую поверхность, ограничивающую объем.

Вопросы

1) В чем заключается физический смысл теоремы Гаусса для электростатического поля в вакууме

2) В центре куба находится точечный заряд q . Чему равен поток вектора Е :

а) через полную поверхность куба; б) через одну из граней куба.

Изменятся ли ответы, если:

а) заряд находится не в центре куба, но внутри его; б) заряд находится вне куба.

3) Что такое линейная, поверхностная, объемная плотности заряда.

4) Укажите связь объемной и поверхностной плотности зарядов.

5) Может ли поле вне разноименно и однородно заряженных параллельных бесконечных плоскостей быть отличным от нуля

6) Электрический диполь помещен внутрь замкнутой поверхности. Каков поток сквозь эту поверхность

Общая формулировка: Поток вектора напряжённости электрического поля через любую, произвольно выбранную замкнутую поверхность пропорционален заключённому внутри этой поверхности электрическому заряду.

В системе СГСЭ:

В системе СИ:

— поток вектора напряженности электрического поля через замкнутую поверхность .

— полный заряд, содержащийся в объеме, который ограничивает поверхность .

— электрическая постоянная.

Данное выражение представляет собой теорему Гаусса в интегральной форме.

В дифференциальной форме теорема Гаусса соответствует одному из уравнений Максвелла и выражается следующим образом

в системе СИ:

,

в системе СГСЭ:

Здесь — объёмная плотность заряда (в случае присутствия среды — суммарная плотность свободных и связанных зарядов), а — оператор набла.

Для теоремы Гаусса справедлив принцип суперпозиции, то есть поток вектора напряжённости через поверхность не зависит от распределения заряда внутри поверхности.

Физической основой теоремы Гаусса является закон Кулона или, иначе, теорема Гаусса является интегральной формулировкой закона Кулона.

Теорема Гаусса для электрической индукции (электрическое смещение).

Для поля в веществе электростатическая теорема Гаусса может быть записана иначе — через поток вектора электрического смещения (электрической индукции). При этом формулировка теоремы выглядит следующим образом: поток вектора электрического смещения через замкнутую поверхность пропорционален заключённому внутри этой поверхности свободному электрическому заряду:

Если же рассматривать теорему для напряжённости поля в веществе, то в качестве заряда Q необходимо брать сумму свободного заряда, находящегося внутри поверхности и поляризационного (индуцированного, связанного) заряда диэлектрика:

,

где ,
— вектор поляризации диэлектрика.

Теорема Гаусса для магнитной индукции

Поток вектора магнитной индукции через любую замкнутую поверхность равен нулю:

.

Это эквивалентно тому, что в природе не существует «магнитных зарядов» (монополей), которые создавали бы магнитное поле, как электрические заряды создают электрическое поле. Иными словами, теорема Гаусса для магнитной индукции показывает, что магнитное поле является вихревым.

Применение теоремы Гаусса

Для вычисления электромагнитных полей используются следующие величины:

Объёмная плотность заряда (см. выше).

Поверхностная плотность заряда

где dS — бесконечно малый участок поверхности.

Линейная плотность заряда

где dl — длина бесконечно малого отрезка.

Рассмотрим поле, создаваемое бесконечной однородной заряженной плоскостью. Пусть поверхностная плотность заряда плоскости одинакова и равна σ. Представим себе мысленно цилиндр с образующими, перпендикулярными к плоскости, и основанием ΔS, расположенным относительно плоскости симметрично. В силу симметрии . Поток вектора напряжённости равен . Применив теорему Гаусса, получим:


,

из которого

в системе СГСЭ

Важно отметить, что несмотря на свою универсальность и общность, теорема Гаусса в интегральной форме имеет сравнительно ограниченное применение в силу неудобства вычисления интеграла. Однако в случае симметричной задачи решение её становится гораздо более простым, чем с использованием принципа суперпозиции.